Giải hệ phương trình \(\hept{\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\\sqrt{\frac{x+y}{8}}-\sqrt{\frac{x-y}{12}}=3\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(f\left(x\right)=\dfrac{12\left(x^2+5,76\right)}{4\sqrt{x^2+3,24}.3\sqrt{x^2+10,24}}=\dfrac{12\left(x^2+5,76\right)}{\sqrt{16x^2+51,84}.\sqrt{9x^2+92,16}}\)
\(f\left(x\right)\ge\dfrac{24\left(x^2+5,76\right)}{16x^2+51,84+9x^2+92,16}=\dfrac{24\left(x^2+5,76\right)}{25\left(x^2+5,76\right)}=\dfrac{24}{25}\)
\(f\left(x\right)_{min}=\dfrac{24}{25}\) khi \(16x^2+51,84=9x^2+92,16\Leftrightarrow x^2=\dfrac{144}{25}\)

Số áo của Ashleyy là a
Số áo của Bethany là b
Số áo của Catilin là c
Ta có : 1 tháng có nhiều nhất 31 ngày
Mà tổng số áo của Ashley và Caitilin trong tháng là :
\(\text{⇒ }a+c\text{≤ }31\)
Các số nguyên tố có 2 chữ số có tổng không lớn hơn 31 là \(:11;13;17\)
Vì tổng số áo của Bethany và Ashley sinh vào cuối tháng nên :
\(\text{⇒ }\left(a+b\right)_{max}\)
\(\text{⇒ }a+b=13+17=30\)
Vì sinh nhật của Bethany đã diễn ra trong tháng
\(\text{⇒ }\left(a+c\right)_{Min}\)
\(\text{⇒ }a+c=11+13=24\)
Do đó hôm nay là : \(b+c=11=17=28\)
\(a+c=24\)
\(b+c=28\)
\(\text{⇒ }b-c=6\)
\(\text{⇒ }2b=34\)
\(b=17\)
Vậy Catilin mặc số 17
Vậy chọn C

TL :
Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).
HT
Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái
\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?

Từ đầu năm tới h chưa gặp dạng nào như này , toàn học đường tròn
https://h.vn/cau-hoi/moi-nguoi-ko-giup-cung-dc-a-bai-nay-hoi-hoi-khocho-doan-thang-ab8cm-tren-cung-mot-nua-mat-phang-bo-ab-lan-luot-ke-cac-doan-thang-ac-va-bd-vuong-goc-voi-doan-thang-ab-tai-ab-sao-cho-acfra.4190207579233
mk vừa giải bên h bạn vào xem thử có đúng không

Tớ cố tình cho ngày hôm nay để tính xong đối chiếu cho dễ. Chứ tớ cho ngày nào cũng được.
Điều kiện \(x+y\ge0\) và \(x\ge y\)
Xét phương trình thứ hai: \(\sqrt{\frac{x+y}{8}}-\sqrt{\frac{x-y}{12}}=3\)\(\Leftrightarrow\frac{1}{2}\sqrt{\frac{x+y}{2}}-\frac{1}{2}\sqrt{\frac{x-y}{3}}=3\)
\(\Leftrightarrow\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\)
Như vậy hệ đã cho \(\Leftrightarrow\hept{\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\end{cases}}\)(*)
Đặt \(\sqrt{\frac{x+y}{2}}=a\left(a\ge0\right)\)và \(\sqrt{\frac{x-y}{3}}=b\left(b\ge0\right)\), khi đó
(*) \(\Leftrightarrow\hept{\begin{cases}a+b=14\\a-b=6\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=20\\b=a-6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=10\\b=10-6=4\end{cases}}\)(nhận)
Vậy \(\sqrt{\frac{x+y}{2}}=10\)\(\Leftrightarrow\frac{x+y}{2}=100\)\(\Leftrightarrow x+y=200\)
và \(\sqrt{\frac{x-y}{3}}=4\)\(\Leftrightarrow\frac{x-y}{3}=16\)\(\Leftrightarrow x-y=48\)
Vậy hệ đã cho \(\Leftrightarrow\hept{\begin{cases}x+y=200\\x-y=48\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=248\\y=x-48\end{cases}}\Leftrightarrow\hept{\begin{cases}x=124\\y=124-48=76\end{cases}}\)(nhận)'
Vậy hệ phương trình đã cho có nghiệm duy nhất là \(\left(124;76\right)\)