K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2022

Số áo của Ashleyy là a

Số áo của Bethany là b

Số áo của Catilin là c

Ta có : 1 tháng có nhiều nhất 31 ngày

Mà tổng số áo của Ashley và Caitilin trong tháng là : 

\(\text{⇒ }a+c\text{≤ }31\)

Các số nguyên tố có 2 chữ số có tổng không lớn hơn 31 là \(:11;13;17\)

Vì tổng số áo của Bethany và Ashley sinh vào cuối tháng nên :

\(\text{⇒ }\left(a+b\right)_{max}\)

\(\text{⇒ }a+b=13+17=30\)

Vì sinh nhật của Bethany đã diễn ra trong tháng 

\(\text{⇒ }\left(a+c\right)_{Min}\)

\(\text{⇒ }a+c=11+13=24\)

Do đó hôm nay là : \(b+c=11=17=28\)

\(a+c=24\)

\(b+c=28\)

\(\text{⇒ }b-c=6\)

\(\text{⇒ }2b=34\)

\(b=17\)

Vậy Catilin mặc số 17

Vậy chọn C

3 tháng 1 2022

TL :

Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b.\).

HT

3 tháng 1 2022

Thưa anh, nếu \(a=b=10^{-4}\) và \(c=0,5-a-b=0,5-2.10^{-4}\),em bấm máy thì ngay cả khi chỉ có một cái 

\(\frac{1}{ab\left(a+b\right)}\)nó đã bằng \(5.10^{11}\)lớn hơn rất nhiều so với \(\frac{87}{2}\), BĐT vẫn đúng chứ ạ?

2 tháng 1 2022

Từ đầu năm tới h chưa gặp dạng nào như này , toàn học đường tròn 

2 tháng 1 2022

https://h.vn/cau-hoi/moi-nguoi-ko-giup-cung-dc-a-bai-nay-hoi-hoi-khocho-doan-thang-ab8cm-tren-cung-mot-nua-mat-phang-bo-ab-lan-luot-ke-cac-doan-thang-ac-va-bd-vuong-goc-voi-doan-thang-ab-tai-ab-sao-cho-acfra.4190207579233

mk vừa giải bên h bạn vào xem thử có đúng không 

2 tháng 1 2022

là chủ nhật hôm nay ngáo à má

2 tháng 1 2022

Tớ cố tình cho ngày hôm nay để tính xong đối chiếu cho dễ. Chứ tớ cho ngày nào cũng được.

1 tháng 1 2022

lê song phương ny bùi diệu linh

1 tháng 1 2022

ny lê song phương là bùi diệu linh đó

31 tháng 12 2021

đợi tý đang tính

31 tháng 12 2021

Điều kiện \(x,y\ne-1\)

Xét phương trình thứ hai: 

\(xy+x+y=3\)\(\Leftrightarrow xy+x+y+1=4\)\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=4\)\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=4\)

Như vậy hệ đã cho \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}+\frac{1}{y+1}=1\\\left(x+1\right)\left(y+1\right)=4\end{cases}}\)(*)

Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\end{cases}\left(a,b\ne0\right)}\), lúc này (*) \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=1\\ab=4\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a+b}{ab}=1\\ab=4\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a+b}{4}=1\\b=\frac{4}{a}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+\frac{4}{a}=4\left(1\right)\\b=\frac{4}{a}\left(2\right)\end{cases}}\)

Giải phương trình \(\left(1\right)\), ta có: \(a+\frac{4}{a}=4\)\(\Leftrightarrow\left(\sqrt{a}\right)^2-2.\sqrt{a}.\frac{2}{\sqrt{a}}+\left(\frac{2}{\sqrt{a}}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{a}-\frac{2}{\sqrt{a}}\right)^2=0\)\(\Leftrightarrow\sqrt{a}-\frac{2}{\sqrt{a}}=0\)\(\Leftrightarrow\sqrt{a}=\frac{2}{\sqrt{a}}\)\(\Leftrightarrow\left(\sqrt{a}\right)^2=2\)\(\Leftrightarrow a=2\)(nhận)

Thay vào \(\left(2\right)\), ta có: \(b=\frac{4}{a}=\frac{4}{2}=2\)(nhận)

Như vậy ta có \(a=b=2\)\(\Leftrightarrow x+1=y+1=2\)\(\Leftrightarrow x=y=1\)(nhận)

Vậy hệ đã cho có nghiệm duy nhất (1;1)