K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1+3+5+...+(2x+1)=441

Số số hạng là \(\dfrac{2x+1-1}{2}+1=\dfrac{2x}{2}+1=x+1\left(số\right)\)

Tổng của dãy số là \(\left(2x+1+1\right)\cdot\dfrac{\left(x+1\right)}{2}=\left(x+1\right)^2\)

Do đó, ta có phương trình:

\(\left(x+1\right)^2=441\)

=>\(\left(x+1\right)^2-21^2=0\)

=>(x+1+21)(x+1-21)=0

=>(x+22)(x-20)=0

=>\(\left[{}\begin{matrix}x=-22\\x=20\end{matrix}\right.\)

23 tháng 7 2024

Tổng: 1 + 3 + 5 + ... + (2x + 1) 

Số lượng số hạng là:

(2x + 1 - 1) : 2 + 1 = x + 1 (số hạng)

=> 1 + 3 + 5 + ... + (2x + 1) = (2x + 1 + 1) x (x + 1) : 2 = `(x+1)^2` 

=> \(\left(x+1\right)^2=441\)

\(=>\left(x+1\right)^2=21^2\\ TH1:x+1=21\\ =>x=21-1\\ =>x=20\\ TH2:x+1=-21\\ =>x=-21-1\\ =>x=-20\)

Mà: x > 0 => x = 20 

23 tháng 7 2024

GIÚP MÌNH VÓI MÌNH THẤY ĐỀ BÀI CÓ GÌ ĐÓ SAI MONG CÁC BẠN SỦA GÚP VÀ GIẢ ,VẼ HÌNH NỮA NHÉ

MÌNH CẢM ƠN

 

23 tháng 7 2024

a) Xét tam giác ABH và tam giác DBH có:

 AB = BD (g.t)

 BH chung

 HA = HD (g.t)

b) Ta có: Góc BHA = Gó BHD =90*

=> HE là trung trực

=> EA = ED

=> Tam giác AED cân

 

23 tháng 7 2024

Theo bài ra ta có: \(\left\{{}\begin{matrix}86-11⋮a\\142-27⋮a\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}75⋮a\\115⋮a\end{matrix}\right.\) ⇒ a \(\in\) ƯC(75; 115)

 75 =  3.52; 115 =  5.23 ⇒ ƯCLN(75; 115) = 5

⇒ a \(\in\) Ư(5) = {1; 5}

vì a > 27 nên không có giá trị nào của a thỏa mãn đề bài

Thay x=4 và y=3 vào biểu thức, ta được:

\(\dfrac{2\cdot4+3\cdot3}{4^2-3^2}=\dfrac{8+9}{7}=\dfrac{17}{7}\)

23 tháng 7 2024

A = \(\dfrac{2x+3y}{x^2-y^2}\)

Thay \(x=4;y=3\) vào A ta có: 

A = \(\dfrac{2.4+3.3}{4^2-3^2}\)

A = \(\dfrac{8+9}{16-9}\)

A = \(\dfrac{17}{7}\)
:

 

23 tháng 7 2024

Ta thấy :

\(45^{10}=9^{10}.5^{10}=3^{20}.5^{10}=\overline{...1}.\overline{...5}=\overline{.....5}\) (vì số tận cùng là 3 và 5)

\(5^{40}=\overline{.....5}\) (vì số tận cùng là 5)

\(\Rightarrow45^{10}-5^{40}=\overline{.....0}\)

mà \(25^{20}=5^{40}=\overline{.....5}\) (vì số tận cùng là 5)

\(\Rightarrow45^{10}-5^{40}:25^{20}=\overline{.....0}\)

\(\Rightarrow45^{10}-5^{40}⋮25^{20}\) \(\left(dpcm\right)\)

22 tháng 7 2024

\(M=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2+2x+4\right)\)

\(=x^3-8-\left(x^3+2x^2+4x+2x^2+4x+8\right)\)

\(=x^3-8-x^3-4x^2-8x-8=-4x^2-8x-16\)

a: Nửa chu vi thửa ruộng là 130:2=65(m)

Tổng số phần bằng nhau là 2+3=5(phần)

Chiều rộng thửa ruộng là 65:5x2=26(m)

Chiều dài thửa ruộng là 65-26=39(m)

Diện tích thửa ruộng là:

26x39=1014(m2)

b: Diện tích phần còn lại là:

\(1014\times\left(1-\dfrac{2}{5}\right)=1014\times0,6=608,4\left(m^2\right)\)

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

nên ADHE là hình chữ nhật

=>AH=DE

=>DE=6(cm)

b: ta có: ADHE là hình chữ nhật

=>\(\widehat{EAH}=\widehat{EDH}\)

mà \(\widehat{EAH}+\widehat{HCA}=90^0\)(ΔHAC vuông tại H)

và \(\widehat{EDH}+\widehat{MDH}=\widehat{MDE}=90^0\)

nên \(\widehat{MDH}=\widehat{HCA}\)

=>\(\widehat{MDH}=\widehat{MHD}\)

=>ΔMDH cân tại M

Ta có: \(\widehat{MDH}+\widehat{MDB}=\widehat{HDB}=90^0\)

\(\widehat{MBD}+\widehat{MHD}=90^0\)(ΔHDB vuông tại D)

mà \(\widehat{MDH}=\widehat{MHD}\)

nên \(\widehat{MDB}=\widehat{MBD}\)

=>MB=MD

=>MB=MH

=>M là trung điểm của BH

c: Ta có: ADHE là hình chữ nhật

=>\(\widehat{HAD}=\widehat{HED}\)

mà \(\widehat{HAD}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)

và \(\widehat{HED}+\widehat{HEN}=\widehat{NED}=90^0\)

nên \(\widehat{HEN}=\widehat{HBA}\)

=>\(\widehat{NEH}=\widehat{NHE}\)

=>NE=NH

Ta có: \(\widehat{NEH}+\widehat{NEC}=\widehat{CEH}=90^0\)

\(\widehat{NHE}+\widehat{NCE}=90^0\)(ΔCEH vuông tại E)

mà \(\widehat{NEH}=\widehat{NHE}\)

nên \(\widehat{NEC}=\widehat{NCE}\)

=>NE=NC

=>NH=NC

=>N là trung điểm của HC

\(\left(x+2y\right)^3-x^2+4y^2\)

\(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)

\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)

20 tháng 7 2024

A B C H I E F

a/

Xét tg ABI và tg ACI có

AB=AC (cạnh bên tg cân)

\(\widehat{BAH}=\widehat{CAH}\) (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường phân giác của góc ở đỉnh)

AI chung

=> tg ABI = tg ACI (c.g.c) => IB=IC => tg IBC cân

b/

tg ABI = tg ACI (cmt) \(\Rightarrow\widehat{AIB}=\widehat{AIC}\)

c/ Xét tg IBF và tg ICE có

\(\widehat{BIF}=\widehat{CIE}\) (góc đối đỉnh)

IB=IC (cmt)

tg ABI = tg ACI (cmt) \(\Rightarrow\widehat{ABI}=\widehat{ACI}\)

=> tg IBF = tg ICE => IE=IF

d/

Ta có

IE=IF (cmt) => tg IEF cân tại I

\(\Rightarrow\widehat{IEF}=\widehat{IFE}=\dfrac{180^o-\widehat{FIE}}{2}\) (1)

Xét tg cân IBC có

\(\widehat{IBC}=\widehat{ICB}=\dfrac{180^o-\widehat{BIC}}{2}\) (2)

Mà \(\widehat{FIE}=\widehat{BIC}\) (góc đối đỉnh) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{IFE}=\widehat{ICB}\) Hai góc này nằm ở vị trí so le trong

=> EF//BC

20 tháng 7 2024

loading... a) ∆ABC cân tại A (gt)

AH là đường cao (gt)

⇒ AH cũng là đường trung trực của ∆ABC

⇒ AH là đường trung trực của BC

I ∈ AH (gt)

⇒ IB = IC

⇒ ∆IBC cân tại I

b) Xét ∆AIB và ∆AIC có:

AI là cạnh chung

AB = AC (do ∆ABC cân tại A)

IB = IC (cmt)

⇒ ∆AIB = ∆AIC (c-c-c)

⇒ ∠AIB = ∠AIC (hai góc tương ứng)

c) Do ∆AIB = ∆AIC (cmt)

⇒ ∠ABI = ∠ACI (hai góc tương ứng)

⇒ ∠FBI = ∠ECI

Xét ∆BIF và ∆CIE có:

∠FBI = ∠ECI (cmt)

IB = IC (cmt)

∠FIB = ∠EIC (đối đỉnh)

⇒ ∆BIF = ∆CIE (g-c-g)

⇒ IF = IE (hai cạnh tương ứng)

Hay IE = IF

d) ∆IBC cân tại I (cmt)

IH là đường trung trực của BC (cmt)

⇒ IH cũng là đường phân giác của ∆IBC

⇒ ∠BIH = ∠CIH

Ta có:

∠AIE = ∠BIH (đối đỉnh)

∠AIF = ∠CIH (đối đỉnh)

Mà ∠BIH = ∠CIH (cmt)

⇒ ∠AIE = ∠AIF

Xét ∆AIE và ∆AIF có:

IE = IF (cmt)

∠AIE = ∠AIF (cmt)

AI là cạnh chung

⇒ ∆AIE = ∆AIF (c-g-c)

⇒ AE = AF (hai cạnh tương ứng)

⇒ A nằm trên đường trung trực của EF (1)

Do IE = IF (cmt)

⇒ I nằm trên đường trung trực của EF (2)

Từ (1) và (2) ⇒ AI là đường trung trực của EF

⇒ AI ⊥ EF

⇒ AH ⊥ EF

Mà AH ⊥ BC (gt)

⇒ EF // BC