K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

\(x^2+3x=-2\)

\(\Leftrightarrow x^2+3x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow x=-1,x=-2\)

23 tháng 10 2021

b) \(x^3-3x^2+3=x\)

\(\Leftrightarrow x^2\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x=1,x=-1,x=3\)

6 tháng 6

File: undefined chắc các bạn cũng thấy câu a) và b) ạ. Mình làm thử có thiếu sót mong bổ xung ạ.

C) gọi giao điểm của AN và CD là O 

Xét ∆ABN và ∆OCN, ta có:

NC=NB( giả thiết)

NOC = NAB ( góc so le trong)

CNO = BNA ( đối đỉnh )

=> ∆ ABN = ∆OCN ( g-c-g)

=> CO=CA ( cặp cạnh tương ứng bằng nhau)

Mà tứ giác ABCD là hình vuông 

=> AB=CD=CO hoặc CD =CO

Vì ∆APM là tam giác vuông tại P 

=> Gốc DPN =90°

Xét ∆ vuông DPO, ta có ( vì gốc DPN =90° cmt)

Ta có CD=CO ( cmt)

DPO =90°

Trong tam giác vuông đường trung tuyến ứng với cạnh huyền 

=> DC=PC=CO

=> ∆ DPC cân tại C ( vì CP= CD) ( đpcm)

 

23 tháng 10 2021

1+1=2 nha bạn!

ủa bạn học lớp 8 là có phép tính hay là sao?

23 tháng 10 2021

a) \(x^2+x=0\)

\(\Rightarrow x.\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

b) \(x^2-5x=0\)

\(\Rightarrow x.\left(x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

c) \(x.\left(x-2\right)+x-2=0\)

\(\Rightarrow x.\left(x-2\right)+\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right).\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

d) \(x.\left(x-3\right)-x+3=0\)

\(\Rightarrow x.\left(x-3\right)-\left(x-3\right)=0\)

\(\Rightarrow\left(x-1\right).\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

e) \(x^2-4=0\)

\(\Rightarrow x^2=4\)

\(\Rightarrow x=\pm2\)

23 tháng 10 2021

\(A=\left(2x-1\right)^2-5x\left(x-1\right)+2\left(x+1\right)\left(x-2\right)\)

\(=4x^2-4x+1-5x^2+5x+2\left(x^2-x-2\right)\)

\(=x^2-x-3\)

DD
23 tháng 10 2021

24. 

Ta có: \(3k^2+3k+1=k^3+3k^2+3k+1-k^3=\left(k+1\right)^3-k^3\)

Do đó \(a_k=\frac{\left(k+1\right)^3-k^3}{\left(k^2+k\right)^3}=\frac{\left(k+1\right)^3-k^3}{k^3.\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)

Áp dụng ta được: 

\(P=a_1+a_2+...+a_9\)

\(=\frac{1}{1^3}-\frac{1}{2^3}+\frac{1}{2^3}-\frac{1}{3^3}+...+\frac{1}{9^3}-\frac{1}{10^3}\)

\(=1-\frac{1}{10^3}=\frac{999}{1000}\)

DD
23 tháng 10 2021

23. Ta có: 

\(B=\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{\left(6^2-1\right)}.....\frac{\left(2n+1\right)^2}{\left(2n+2\right)^2-1}\)

\(=\frac{1.1.3.3.5.5.....\left(2n+1\right)\left(2n+1\right)}{\left(1.3\right).\left(3.5\right).\left(5.7\right).....\left[\left(2n+1\right)\left(2n+3\right)\right]}\)

\(=\frac{\left[1.3.5.....\left(2n+1\right)\right].\left[1.3.5.....\left(2n+1\right)\right]}{\left[1.3.5.....\left(2n+1\right)\right].\left[3.5.7.....\left(2n+3\right)\right]}\)

\(=\frac{1}{2n+3}\)