7\12-5\16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Chu vi hình vuông:
P = a x 4
Diện tích hình vuông:
S = a x a
Chu vi hình chữ nhật:
P = (a + b) x 2
Diện tích hình chữ nhật:
S = a x b
Chu vi hình tròn:
C = r x 2 x 3,14
Diện tích hình tròn:
S = r x r x 3,14
Chu vi hình tam giác:
C = a + b + c
Diện tích hình tam giác:
S = a x h : 2
Chu vi hình bình hành:
C = 2 x (a + b)
Diện tích hình bình hành:
S = a x h
Diện tích xung quanh hình lập phương:
S = 4a^2
Thể tích hình lập phương:
V = a^3
Diện tích xung quanh hình chữ nhật:
V= 2 x ( a + b) x c
Thể tích hình chữ nhật:
V = a x b x c

\(3\operatorname{km}^25ha=3000000m^2+5000m^2=3005000m^2\)
3km\(^2\) 5ha = 3 000 000m\(^2\) + 50 000m\(^2\)
3km\(^2\) 5ha = 3 050 000m\(^2\)





📘 1. Nhị thức Newton là gì?
Nhị thức Newton là một công thức dùng để khai triển lũy thừa của một tổng dạng \(\left(\right. a + b \left.\right)^{n}\), trong đó \(n\) là số tự nhiên.
✅ Công thức nhị thức Newton:
\(\left(\right. a + b \left.\right)^{n} = \sum_{k = 0}^{n} \left(\right. \frac{n}{k} \left.\right) a^{n - k} b^{k}\)
Trong đó:
- \(\left(\right. \frac{n}{k} \left.\right)\) là hệ số nhị thức, đọc là "n chọn k", được tính bằng:
\(\left(\right. \frac{n}{k} \left.\right) = \frac{n !}{k ! \left(\right. n - k \left.\right) !}\)
- \(a , b\) là các biểu thức hoặc số thực.
- \(n\) là số mũ nguyên không âm (0, 1, 2, ...)
🎯 Ví dụ:
Khai triển \(\left(\right. a + b \left.\right)^{3}\) bằng nhị thức Newton:
\(\left(\right. a + b \left.\right)^{3} = \left(\right. \frac{3}{0} \left.\right) a^{3} b^{0} + \left(\right. \frac{3}{1} \left.\right) a^{2} b^{1} + \left(\right. \frac{3}{2} \left.\right) a^{1} b^{2} + \left(\right. \frac{3}{3} \left.\right) a^{0} b^{3}\) \(= 1 a^{3} + 3 a^{2} b + 3 a b^{2} + 1 b^{3} = a^{3} + 3 a^{2} b + 3 a b^{2} + b^{3}\)
🟨 2. Tam giác Pascal là gì?
Tam giác Pascal là một bảng sắp xếp các hệ số nhị thức \(\left(\right. \frac{n}{k} \left.\right)\) theo hình tam giác. Mỗi số trong tam giác là tổng của hai số phía trên nó.
🔻 Cấu trúc của tam giác Pascal:
1 ← hàng 0
1 1 ← hàng 1
1 2 1 ← hàng 2
1 3 3 1 ← hàng 3
1 4 6 4 1 ← hàng 4
1 5 10 10 5 1 ← hàng 5
...
- Mỗi hàng ứng với khai triển của \(\left(\right. a + b \left.\right)^{n}\)
- Hệ số của \(\left(\right. a + b \left.\right)^{n}\) là các số ở hàng thứ \(n\) của tam giác Pascal.
🎯 Ví dụ ứng dụng:
Dùng tam giác Pascal để khai triển \(\left(\right. x + y \left.\right)^{4}\):
→ Hàng thứ 4 là: 1 4 6 4 1
\(\left(\right. x + y \left.\right)^{4} = 1 x^{4} + 4 x^{3} y + 6 x^{2} y^{2} + 4 x y^{3} + 1 y^{4}\)
✅ Tóm tắt dễ nhớ:
Nội dung | Nhị thức Newton | Tam giác Pascal |
---|---|---|
Khái niệm | Khai triển \(\left(\right. a + b \left.\right)^{n}\)(a+b)n(a + b)^n(a+b)n | Bảng hệ số \(\left(\right. \frac{n}{k} \left.\right)\)(nk)\binom{n}{k}(kn) |
Dạng tổng quát | \(\left(\right. a + b \left.\right)^{n} = \sum_{k = 0}^{n} \left(\right. \frac{n}{k} \left.\right) a^{n - k} b^{k}\)(a+b)n=∑k=0n(nk)an−kbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^k(a+b)n=∑k=0n(kn)an−kbk | Các hệ số nhị thức được sắp xếp theo hình tam giác |
Ứng dụng | Giải toán khai triển, tổ hợp, tính nhanh | Tìm hệ số nhị thức nhanh chóng, ứng dụng trong nhị thức Newton xin 1 tick |
=13/48
\(\frac{7}{12}-\frac{5}{16}=\frac{13}{48}\)