Bệnh loãng xương là gì , hay gặp ở đối tượng nào và biện pháp phòng tránh ra sao tối đa 15 dòng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



năm canh thìn tiếp theo sẽ là năm 2000+60=2060
=>năm Canh Thìn tiếp theo thuộc thế kỷ XXI
Giải:
Năm Canh Thìn tiếp theo là năm: 2000 + 60 = 2060
2060 : 100 = 20 dư 60
Vậy năm Canh thìn tiếp theo thuộc thế kỷ:
20 + 1 = 21
Đáp số: 21

\(\frac12\) thế kỉ = 100 năm x \(\frac12\) = 50 năm
\(\frac12\) thế kỉ = 50 năm

Ta thấy nếu một trong hai số \(x,y\) bằng 0 thì số kia cũng bằng 0. Do đó \(x=y=0\) là một nghiệm của pt đã cho.
Xét \(x,y\ne0\) . Gọi \(\operatorname{gcd}\left(x,y\right)=d\), khi đó \(\begin{cases}x=da\\ y=db\end{cases}\) với \(\operatorname{gcd}\left(a,b\right)=1\) và \(d,a,b\ne0\). Khi đó pt đã cho thành:
\(\left(da\right)^2\left(da+db\right)=\left(db\right)^2\left(da-db\right)^2\)
\(\lrArr a^2\left(a+b\right)=db^2\left(a-b\right)^2\) (1)
Vì \(\operatorname{gcd}\left(a,b\right)=1\) nên \(\operatorname{gcd}\left(b,a+b\right)=\operatorname{gcd}\left(a,a-b\right)=1\) (thuật toán Euclid).
Từ (1) suy ra \(a^2\vert db^2\left(a-b\right)^2\), nhưng vì \(\operatorname{gcd}\left(a,b\right)=\operatorname{gcd}\left(a,a-b\right)=1\) nên \(a^2\vert d\). Đặt \(d=ka^2\) thì (1) thành
\(a+b=kb^2\left(a-b\right)^2\) (2)
Từ (2) suy ra \(b^2\left(a-b\right)^2\vert a+b\), suy ra \(\begin{cases}b^2\vert a+b\\ \left(a-b\right)^2\vert a+b\end{cases}\)
Ta có \(b^2\vert a+b\) thì \(b\vert a+b\) thì \(b\vert a\), nhưng do \(\operatorname{gcd}\left(a,b\right)=1\) nên \(b=\pm1\)
Tương tự, suy ra \(a-b=\pm1\)
Ta lập bảng sau:
b | 1 | -1 | 1 | -1 |
a-b | 1 | -1 | -1 | 1 |
a | 2 | -2 | 0 (loại) | 0 (loại) |
Nếu \(\left(a,b\right)=\left(2,1\right)\) thì \(k=3\), suy ra \(d=12\), dẫn đến \(\left(x,y\right)=\left(24,12\right)\), thử lại thỏa mãn.
Nếu \(\left(a,b\right)=\left(-2,-1\right)\) thì \(k=-3\), suy ra \(d=-12\), cũng dẫn đến \(\left(x,y\right)=\left(24,12\right)\).
Vậy có hai cặp số \(\left(a,b\right)\) thỏa mãn yêu cầu bài toán là \(\left(0,0\right)\) và \(\left(24,12\right)\).
@Lê Song Phương mình cảm ơn bạn, nhưng mình thấy là \(\left(24;12\right)\) cũng là một nghiệm ạ. Bạn có thể tìm cách khác không ạ?

Sửa đề: Tính tỉ số của A và B
Ta có: \(A=92-\frac19-\frac{2}{10}-\cdots-\frac{92}{100}\)
\(=\left(1-\frac19\right)+\left(1-\frac{2}{10}\right)+\cdots+\left(1-\frac{92}{100}\right)\)
\(=\frac89+\frac{8}{10}+\cdots+\frac{8}{100}=8\left(\frac19+\frac{1}{10}+\cdots+\frac{1}{100}\right)\)
Ta có: \(B=\frac{1}{45}+\frac{1}{50}+\cdots+\frac{1}{500}\)
\(=\frac15\left(\frac19+\frac{1}{10}+\cdots+\frac{1}{100}\right)\)
Do đó: Tỉ số của A và B là:
\(\frac{A}{B}=\frac{8\left(\frac19+\frac{1}{10}+\cdots+\frac{1}{100}\right)}{\frac15\left(\frac19+\frac{1}{10}+\cdots+\frac{1}{100}\right)}=8\cdot5=40\)

Olm chào em. Olm rất vui khi em học hành chăm chỉ, tiến bộ và luôn có động lực để học tập trên Olm. Chúc em luôn giữ được phong độ và động lực cũng như thành tích học tập như hiện nay.

a) Khi \(o_3=55^{\circ}\)
- Khi hai đường thẳng cắt nhau tại điểm \(O\), ta có bốn góc: \(o_1,o_2,o_3,o_4\).
- Các góc đối diện với nhau là bằng nhau, tức là:
- \(o_1=o_3\)
- \(o_2=o_4\)
- Từ \(o_3=55^{\circ}\), ta có:
- \(o_1=55^{\circ}\)
- Tổng các góc xung quanh điểm \(O\) là \(36 0^{\circ}\): \(o_1+o_2+o_3+o_4=360^{\circ}\)
- Thay giá trị của \(o_1\) và \(o_3\): \(55^{\circ}+o_2+55^{\circ}+o_4=360^{\circ}\) \(110^{\circ}+o_2+o_4=360^{\circ}\) \(o_2+o_4=250^{\circ}\)
- Vì \(o_2=o_4\), ta có: \(2o_2=250^{\circ}\textrm{ }\Longrightarrow\textrm{ o}_2=125^{\circ}\) \(o_4=125^{\circ}\)
- Kết quả:
- \(o_1=55^{\circ}\)
- \(o_2=125^{\circ}\)
- \(o_3=55^{\circ}\)
- \(o_4=125^{\circ}\)
b) Khi \(o_1+o_3=150^{\circ}\)
- Từ \(o_1+o_3=150^{\circ}\) và biết rằng \(o_1=o_3\): \(o_1+o_1=150^{\circ}\textrm{ }\Longrightarrow\textrm{ }2o_1=150^{\circ}\textrm{ }\Longrightarrow\textrm{ o}_1=75^{\circ}\) \(o_3=75^{\circ}\)
- Từ đó, ta có: \(o_2=180^{\circ}-75^{\circ}=105^{\circ}\) \(o_4=105^{\circ}\)
- \(o_2=180^{\circ}-o_1\) (góc phụ)
- \(o_4=o_2\) (góc đối diện)
- Kết quả:
- \(o_1=75^{\circ}\)
- \(o_2=105^{\circ}\)
- \(o_3=75^{\circ}\)
- \(_{O4}=105^{\circ}\)
Tóm tắt kết quả:
- a) \(o_1=55^{\circ},o_2=125^{\circ},o_3=55^{\circ},o_4=125^{\circ}\)
- b) \(o_1=75^{\circ},o_2=105^{\circ},o_3=75^{\circ},o_4=105^{\circ}\)
- THAM KHẢO
Giải:
\(\hat{o_1}\) = \(\hat{O_3}\) = \(55^0\) (hai góc đối đỉnh)
\(\hat{O4}\) + \(\hat{O3}\) = 180\(^0\) (hai góc kề bù)
\(\hat{O_4}\) = 180\(^0\) - \(\hat{O_3}\)
\(\hat{O}_4\) = 180\(^0\) - 55\(^0\) = 125\(^0\)
\(\hat{O_4}\) = \(\hat{O_2}\) = 125\(^0\) (hai góc đối đỉnh)
- Bệnh loãng xương là tình trạng mật độ xương giảm và cấu trúc xương bị suy yếu, làm xương trở nên giòn, dễ gãy dù chỉ với va chạm nhẹ.
- Đối tượng dễ mắc loãng xương bao gồm:
- Biện pháp phòng tránh loãng xương:
- Bệnh loãng xương là tình trạng mật độ xương giảm và cấu trúc xương bị suy yếu, làm xương trở nên giòn, dễ gãy dù chỉ với va chạm nhẹ.
đối tượng dễ bị là
người cao tuổi,đặc biệt là phụ nữ
- Biện pháp phòng tránh loãng xương: