K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7

\(A=\frac{72+36\times2+24\times3+18\times4+144}{9\times8+\cdots+3\times2+2\times1-1\times2-2\times3-\cdots-8\times9}\)

\(\) Đặt giá trị phần tử là: \(B\)

\(A=\frac{B}{0}\) (không hợp lí)

\(\rArr\) \(A\) không xác định

21 tháng 7

Đặt mẫu số là B ta có:

B = 9.8 + 8.7 + 7.6 + ...+ 3.2 + 2.1 - 1.2 - 2.3 - ...- 7.8 - 8.9

B = (9.8 - 8.9) + (8.7 - 7.8) + ...(2.1 - 1.2)

B = 0 + 0 + ...+ 0

B = 0

Vậy giá trị của biểu thức là không xác định

21 tháng 7

(x+4).(x3−27)=0

[x+4=0x3−27=0 

[x=−4x3=27 

[x=−4x3=33 

[x=−4x=3 

Vậy x∈{−4;3}

21 tháng 7

\(\left(4-x\right)^3=27\)

\(\Rightarrow\left(4-x\right)^3=3^3\)

\(\Rightarrow4-x=3\)

\(\Rightarrow x=4-3\)

\(\Rightarrow x=1\)

Vậy `x=1`

21 tháng 7

Ta đặt biểu thức trên là: \(A\)

\(A=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)\ldots\left(1-\frac{2}{99.100}\right)\)

Ta viết 1 biểu thức chung như sau:

\(1-\frac{2}{n\left(n_{}+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)

\(A=\left(\frac{\left(2+2\right)\left(2-1\right)}{2\left(2+1\right)}\right)\left(\frac{\left(3+2\right)\left(3-1\right)}{3\left(3+1\right)}\right)\left(\frac{\left(4+2\right)\left(4-1\right)}{4\left(4+1\right)}\right)\ldots\left(\frac{\left(99+2\right)\left(99-1\right)}{99\left(99+1\right)}\right)\)

\(A=\frac{\left(4.1\right).\left(5.2\right).\left(6.3\right)\ldots\left(101.98\right)}{\left(2.3\right).\left(3.4\right).\left(4.5\right)\ldots\left(99.100\right)}=\frac{101}{3}\)

\(1-\frac{2}{a\left(a+1\right)}=\frac{a\left(a+1\right)-2}{a\left(a+1\right)}\)

\(=\frac{a^2+a-2}{a\left(a+1\right)}=\frac{\left(a+2\right)\cdot\left(a-1\right)}{a\left(a+1\right)}\)

\(\left(1-\frac{2}{2\cdot3}\right)\left(1-\frac{2}{3\cdot4}\right)\cdot\ldots\cdot\left(1-\frac{2}{99\cdot100}\right)\)

\(=\frac{\left(2+2\right)\left(2-1\right)}{2\left(2+1\right)}\cdot\frac{\left(3+2\right)\left(3-1\right)}{3\left(3+1\right)}\cdot\ldots\cdot\frac{\left(100+2\right)\left(100-1\right)}{100\left(100+1\right)}\)

\(=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\ldots\cdot\frac{102\cdot99}{100\cdot101}\)

\(=\frac{4\cdot5\cdot\ldots\cdot102}{2\cdot3\cdot\ldots\cdot100}\cdot\frac{1\cdot2\cdot\ldots\cdot99}{3\cdot4\cdot\ldots\cdot101}=\frac{101\cdot102}{2\cdot3}\cdot\frac{1\cdot2}{100\cdot101}\)

\(=\frac{102}{3\cdot100}=\frac{34}{100}=\frac{17}{50}\)

Ta có: EF//BC

AH⊥BC

Do đó: AH⊥FE tại E

=>ΔAEF vuông tại E

Xét tứ giác BEKA có \(\hat{BEK}+\hat{BAK}=90^0+90^0=180^0\)

nên BEKA là tứ giác nội tiếp

=>\(\hat{EBK}=\hat{EAK}\)

=>\(\hat{EBK}=\hat{HAC}\)

\(\hat{HAC}=\hat{HBA}\left(=90^0-\hat{HAB}\right)\)

\(\hat{HBA}=\hat{AFE}\) (hai góc đồng vị, CB//EF)

nên \(\hat{EBK}=\hat{AFE}\)

Xét ΔEBK vuông tại E và ΔEFA vuông tại E có

\(\hat{EBK}=\hat{EFA}\)

Do đó: ΔEBK~ΔEFA

=>\(\frac{BK}{FA}=\frac{BE}{FE}\)

=>\(BK\cdot FE=BE\cdot FA\)

21 tháng 7

ê mình hỏi

ab^3 hay là (ab)^3 thế


Ta có: \(\frac12+\frac13+\frac14+\frac15+\frac16+\frac17+\frac18+\frac19\)

\(=\left(\frac12+\frac13+\frac16\right)+\left(\frac14+\frac18\right)+\left(\frac15+\frac17+\frac19\right)\)

\(=1+\frac28+\frac18+\left(\frac{63}{315}+\frac{45}{315}+\frac{35}{315}\right)\)

\(=1+\frac38+\frac{143}{315}=\frac{11}{8}+\frac{143}{315}=\frac{11\cdot315+143\cdot8}{8\cdot315}=\frac{4609}{2520}\)

21 tháng 7

(56 x 35 + 56 x 18) : 53

= 56 x (35 + 18) : 53

= 56 x 53 : 53

= 56 x (53 : 53)

= 56 x 1

= 56

21 tháng 7

( 56 x 35 + 56 x 18 ) : 53

= ( 56 x ( 35 + 18) ) : 53

= ( 56 x 53 ) : 53

= 56 x ( 53 : 53)

= 56 x 1

=56

21 tháng 7

Giải:

Gọi thời gian tổ một hoàn thành công việc là \(x\)(giờ) \(x>0\)

Thời gian tổ hai hoàn thành công việc là: \(x+\) 6 (giờ)

Trong một giờ tổ một làm được là:

1 : \(x\) = \(\frac{1}{x}\)(giờ)

Trong hai giờ tổ hai làm được là:

1 : (\(x+6\)) = \(\frac{1}{x+6}\) (giờ)

Trong một giờ hai tổ cùng làm được:

\(\frac{1}{x}\) + \(\frac{1}{x+6}\) = \(\frac{2x+6}{x\left(x+6\right)}\)

Theo bài ra ta có phương trình:

1 : \(\frac{2x+6}{x\left(x+6\right)}\) = 4

\(\frac{x\left(x+6\right)}{2x+6}\) = 4

\(x^2+6x\) = 4.(\(2x+6\))

\(x^2+6x\) = 8\(x\) + 24

\(x^2\) + 6\(x\) - 8\(x\) - 24 = 0

\(x^2\) - (8\(x-6x\)) - 24 = 0

\(x^2-2x\) - 24 = 0

Δ' = 1 - (-24) = 25 > 0

Phương trình có hai nghiệm phân biệt:

\(x_1\) = [ -(-1) + \(\sqrt{25}\) ]: = 6 (nhận)

\(x_2\) = [-(-1) - \(\sqrt{25}\) ] = - 4 (loại)

Thời gian đội một làm một mình xong công việc là: 6 giờ

Thời gian đội hai làm một mình xong công việc là:

6 + 6 = 12 (giờ)

Kết luận: Đội một làm một mình xong công việc sau 6 giờ

Đội hai làm một mình xong công việc sau 12 giờ




21 tháng 7

Giải:

Gọi thời gian tổ một hoàn thành công việc là \(x\)(giờ) \(x > 0\)

Thời gian tổ hai hoàn thành công việc là: \(x +\) 6 (giờ)

Trong một giờ tổ một làm được là:

1 : \(x\) = \(\frac{1}{x}\)(giờ)

Trong hai giờ tổ hai làm được là:

1 : (\(x + 6\)) = \(\frac{1}{x + 6}\) (giờ)

Trong một giờ hai tổ cùng làm được:

\(\frac{1}{x}\) + \(\frac{1}{x + 6}\) = \(\frac{2 x + 6}{x \left(\right. x + 6 \left.\right)}\)

Theo bài ra ta có phương trình:

1 : \(\frac{2 x + 6}{x \left(\right. x + 6 \left.\right)}\) = 4

\(\frac{x \left(\right. x + 6 \left.\right)}{2 x + 6}\) = 4

\(x^{2} + 6 x\) = 4.(\(2 x + 6\))

\(x^{2} + 6 x\) = 8\(x\) + 24

\(x^{2}\) + 6\(x\) - 8\(x\) - 24 = 0

\(x^{2}\) - (8\(x - 6 x\)) - 24 = 0

\(x^{2} - 2 x\) - 24 = 0

Δ' = 1 - (-24) = 25 > 0

Phương trình có hai nghiệm phân biệt:

\(x_{1}\) = [ -(-1) + \(\sqrt{25}\) ]: = 6 (nhận)

\(x_{2}\) = [-(-1) - \(\sqrt{25}\) ] = - 4 (loại)

Thời gian đội một làm một mình xong công việc là: 6 giờ

Thời gian đội hai làm một mình xong công việc là:

6 + 6 = 12 (giờ)

Kết luận: Đội một làm một mình xong công việc sau 6 giờ

Đội hai làm một mình xong công việc sau 12 giờ


6A:

a: \(\frac{3}{x^2-3x}=\frac{3}{x\left(x-3\right)}=\frac{3\cdot2}{2x\left(x-3\right)}=\frac{6}{2x\left(x-3\right)}\)

\(\frac{5}{2x-6}=\frac{5}{2\left(x-3\right)}=\frac{5\cdot x}{2\left(x-3\right)\cdot x}=\frac{5x}{2x\left(x-3\right)}\)

b: \(\frac{3}{x^2-4}=\frac{3}{\left(x-2\right)\left(x+2\right)}=\frac{3\cdot\left(x-2\right)}{\left(x-2\right)\left(x-2\right)\left(x+2\right)}=\frac{3x-6}{\left(x-2\right)^2\cdot\left(x+2\right)}\)

\(\frac{x}{x^2-4x+4}=\frac{x}{\left(x-2\right)^2}=\frac{x\cdot\left(x+2\right)}{\left(x-2\right)^2\cdot\left(x+2\right)}\)

6B:

a: \(\frac{5x}{2x+8}=\frac{5x}{2\left(x+4\right)}=\frac{5x\cdot3}{2\cdot3\cdot\left(x+4\right)}=\frac{15x}{6\left(x+4\right)}\)

\(\frac{x+2}{3x+12}=\frac{x+2}{3\left(x+4\right)}=\frac{\left(x+2\right)\cdot2}{3\cdot\left(x+4\right)\cdot2}=\frac{2x+4}{6\left(x+4\right)}\)

b: \(\frac{7}{x^2-6x+9}=\frac{7}{\left(x-3\right)^2}=\frac{7\cdot3x}{3x\left(x-3\right)^2}=\frac{21x}{3x\left(x-3\right)^2}\)

\(\frac{x}{3x^2-9x}=\frac{x}{3x\left(x-3\right)}=\frac{x\left(x-3\right)}{3x\left(x-3\right)\left(x-3\right)}=\frac{x^2-3x}{3x\left(x-3\right)^2}\)

7A:

a: \(\frac{10}{x+3}=\frac{10\cdot2\cdot\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}=\frac{20x-60}{2\left(x+3\right)\left(x-3\right)}\)

\(\frac{5}{2x-6}=\frac{5}{2\left(x-3\right)}=\frac{5\cdot\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{5x+15}{2\left(x-3\right)\left(x+3\right)}\)

\(\frac{-1}{x^2-9}=\frac{-1}{\left(x-3\right)\left(x+3\right)}=\frac{-1\cdot2}{2\cdot\left(x-3\right)\left(x+3\right)}=-\frac{2}{2\left(x-3\right)\left(x+3\right)}\)

b: \(\frac{1}{2x-y}=\frac{4\left(x-y\right)^2}{4\left(2x-y\right)\left(x-y\right)^2}=\frac{4x^2-8xy+4y^2}{4\left(2x-y\right)\left(x-y\right)^2}\)

\(\frac{x}{4x-4y}=\frac{x}{4\left(x-y\right)}=\frac{x\left(x-y\right)\left(2x-y\right)}{4\left(x-y\right)\left(x-y\right)\left(2x-y\right)}=\frac{\left(x^2-xy\right)\left(2x-y\right)}{4\left(x-y\right)^2\cdot\left(2x-y\right)}\)

\(\frac{-1}{x^2-2xy+y^2}=\frac{-1}{\left(x-y\right)^2}=\frac{-1\cdot4\cdot\left(2x-y\right)}{4\left(2x-y\right)\left(x-y\right)^2}=\frac{-8x+4y}{4\left(2x-y\right)\left(x-y\right)^2}\)

7B:

a: \(\frac{-7}{x-4}=\frac{-7\cdot3\cdot\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\cdot3}=\frac{-21x-84}{3\left(x-4\right)\left(x+4\right)}\)

\(\frac{3}{3x+12}=\frac{3}{3\left(x+4\right)}=\frac{3\left(x-4\right)}{3\left(x+4\right)\cdot\left(x-4\right)}=\frac{3x-12}{3\left(x+4\right)\left(x-4\right)}\)

\(\frac{-5}{16-x^2}=\frac{5}{x^2-16}=\frac{5}{\left(x-4\right)\left(x+4\right)}=\frac{5\cdot3}{3\left(x-4\right)\left(x+4\right)}=\frac{15}{3\left(x-4\right)\left(x+4\right)}\)

b: \(\frac{1}{2x-y}=\frac{1\cdot\left(2x-y\right)\left(2x+y\right)}{\left(2x-y\right)\left(2x-y\right)\left(2x+y\right)}=\frac{4x^2-y^2}{\left(2x-y\right)^2\cdot\left(2x+y\right)}\)

\(\frac{-2}{4x^2-y^2}=\frac{-2}{\left(2x-y\right)\left(2x+y\right)}=\frac{-2\cdot\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)\left(2x-y\right)}=\frac{-4x+2y}{\left(2x-y\right)^2\cdot\left(2x+y\right)}\)

\(\frac{2x^2+y^2}{4x^2-4xy+y^2}=\frac{2x^2+y^2}{\left(2x-y\right)^2}=\frac{\left(2x^2+y^2\right)\left(2x+y\right)}{\left(2x-y\right)^2\cdot\left(2x+y\right)}\)

21 tháng 7

Giải:

Gọi vận tốc trung bình của xe thứ hai là: \(x\) (km/h)

Vận tốc trung bình của xe thứ nhất là:

\(x+5\) (km/h)

Thời gian xe thứ nhất đi hết quãng đường từ Hà Nội tới Hải Phòng là:

9 giờ 40 phút - 7 giờ = 2 giờ 40 phút

2 giờ 40 phút = \(\frac83\) giờ

Thời gian xe thứ hai đi hết quãng đường từ Hà Nội tới Hải Phòng là:

2 giờ 40 phút + 20 phút = 3 giờ

Theo bài ra ta có phương trình:

(\(x+5\)) x \(\frac83\) = \(x\) x \(3\)

8\(x\) + 40 = 9\(x\)

9\(\)\(x-8x\) = 40

\(x=40\)(thỏa mãn)

Vận tốc trung bình của xe thứ hai là: 40km/h

Vận tốc trung bình của xe thứ nhất là: 40 + 5 = 45(km/h)

Kết luận: Vận tốc trung bình của xe thứ nhất là: 45km/h

Vận tốc trung bình của xe thứ hai là: 40km/h