K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
21 tháng 7

CÁCH 1: Dùng BĐT Cauchy

Ta có: `a^2+b^2>=2\sqrt{a^2b^2}=2ab`

`b^2+c^2>=2\sqrt{b^2*c^2}=2bc`

`c^2+a^2>=2\sqrt{c^2*a^2}=2ca`

Cộng theo vế ta được:

`a^2+b^2+b^2+c^2+c^2+a^2>=2ab+2bc+2ca`

`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`<=>a^2+b^2+c^2>=ab+bc+ca` (ĐPCM)

CÁCH 2: BIến đổi tương đương

Ta có: `a^2+b^2+c^2>=ab+bc+ca`

`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`<=>2a^2+2b^2+2c^2-2ab-2bc-2ca>=0`

`<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)>=0`

`<=>(a-b)^2+(b-c)^2+(c-a)^2>=0` (luôn đúng)

Do đó: `a^2+b^2+c^2>=ab+bc+ca` (ĐPCM)

1: ĐKXĐ: x∉{0;-1}

Ta có: \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)

=>\(\frac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\frac{1-2x}{x\left(x+1\right)}=\frac{x}{x\left(x+1\right)}\)

=>\(\left(x-1\right)\left(x+1\right)+1-2x=x\)

=>\(x^2-1+1-2x-x=0\)

=>\(x^2-3x=0\)

=>x(x-3)=0

=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x=3\left(nhận\right)\end{array}\right.\)

2: ĐKXĐ: x∉{0;4}

ta có: \(\frac{5}{x}+\frac{x-3}{x-4}=\frac{x^2-10}{x\left(x-4\right)}\)

=>\(\frac{5\left(x-4\right)+x\left(x-3\right)}{x\left(x-4\right)}=\frac{x^2-10}{x\left(x-4\right)}\)

=>\(5\left(x-4\right)+x\left(x-3\right)=x^2-10\)

=>\(5x-20+x^2-3x=x^2-10\)

=>2x-20=-10

=>2x=10

=>x=5(nhận)

3: ĐKXĐ: x∉{0;3}

Ta có: \(\frac{x+3}{x-3}=\frac{3}{x^2-3x}+\frac{1}{x}\)

=>\(\frac{x+3}{x-3}=\frac{3}{x\left(x-3\right)}+\frac{1}{x}\)

=>\(\frac{x\left(x+3\right)}{x\left(x-3\right)}=\frac{3}{x\left(x-3\right)}+\frac{x-3}{x\left(x-3\right)}\)

=>\(x\left(x+3\right)=3+x-3=x\)

=>\(x^2+3x-x=0\)

=>\(x^2+2x=0\)

=>x(x+2)=0

=>\(\left[\begin{array}{l}x=0\\ x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-2\left(nhận\right)\end{array}\right.\)

4: ĐKXĐ: x∉{0;3}

Ta có: \(\frac{3}{x^2-3x}+\frac{1}{x}=\frac{x+4}{x-3}\)

=>\(\frac{3}{x\left(x-3\right)}+\frac{1}{x}=\frac{x+4}{x-3}\)

=>\(\frac{3+x-3}{x\left(x-3\right)}=\frac{x\left(x+4\right)}{x\left(x-3\right)}\)

=>\(x=x\left(x+4\right)\)

=>x(x+4)-x=0

=>x(x+3)=0

=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x=-3\left(nhận\right)\end{array}\right.\)

5: ĐKXĐ: x∉{0;4}

ta có: \(\frac{x+4}{x-4}-\frac{1}{x}=\frac{4}{x^2-4x}\)

=>\(\frac{x+4}{x-4}-\frac{1}{x}=\frac{4}{x\left(x-4\right)}\)

=>\(\frac{x\left(x+4\right)-\left(x-4\right)}{x\left(x-4\right)}=\frac{4}{x\left(x-4\right)}\)

=>\(x\left(x+4\right)-x+4=4\)

=>\(x^2+4x-x=0\)

=>\(x^2+3x=0\)

=>x(x+3)=0

=>\(\left[\begin{array}{l}x=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-3\left(nhận\right)\end{array}\right.\)

6: ĐKXĐ: x∉{3;-1}

Ta có: \(\frac{x}{x-3}+\frac{x}{x+1}=\frac{2x^2-4}{\left(x-3\right)\left(x+1\right)}\)

=>\(\frac{x\left(x+1\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}=\frac{2x^2-4}{\left(x-3\right)\left(x+1\right)}\)

=>\(x\left(x+1\right)+x\left(x-3\right)=2x^2-4\)

=>\(x^2+x+x^2-3x=2x^2-4\)

=>-2x=-4

=>x=2(nhận)

7: ĐKXĐ: x∉{0;2}

ta có: \(\frac{x+2}{x-2}-\frac{6}{x}=\frac{9}{x^2-2x}\)

=>\(\frac{x+2}{x-2}-\frac{6}{x}=\frac{9}{x\left(x-2\right)}\)

=>\(\frac{x\left(x+2\right)-6\left(x-2\right)}{x\left(x-2\right)}=\frac{9}{x\left(x-2\right)}\)

=>x(x+2)-6(x-2)=9

=>\(x^2+2x-6x+12-9=0\)

=>\(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>\(\left[\begin{array}{l}x-1=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=1\left(nhận\right)\\ x=3\left(nhận\right)\end{array}\right.\)

8: ĐKXĐ: x∉{0;2}

ta có: \(\frac{2}{x^2-2x}+\frac{1}{x}=\frac{x+2}{x-2}\)

=>\(\frac{2}{x\left(x-2\right)}+\frac{1}{x}=\frac{x+2}{x-2}\)

=>\(\frac{2+x-2}{x\left(x-2\right)}=\frac{x\left(x+2\right)}{x\left(x-2\right)}\)

=>x(x+2)=x

=>x(x+2)-x=0

=>x(x+2-1)=0

=>x(x+1)=0

=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x=-1\left(nhận\right)\end{array}\right.\)

9: ĐKXĐ: x∉{0;-5}

\(\frac{x-5}{x}+\frac{x-3}{x+5}=\frac{x-25}{x^2+5x}\)

=>\(\frac{x-5}{x}+\frac{x-3}{x+5}=\frac{x-25}{x\left(x+5\right)}\)

=>\(\frac{\left(x-5\right)\left(x+5\right)+x\left(x-3\right)}{x\left(x+5\right)}=\frac{x-25}{x\left(x+5\right)}\)

=>\(\left(x-5\right)\left(x+5\right)+x\left(x-3\right)=x-25\)

=>\(x^2-25+x^2-3x-x+25=0\)

=>\(2x^2-4x=0\)

=>2x(x-2)=0

=>x(x-2)=0

=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x=2\left(nhận\right)\end{array}\right.\)

10:

ĐKXĐ: x∉{0;6}

\(\frac{x+6}{x-6}-\frac{6}{x^2-6x}=\frac{1}{x}\)

=>\(\frac{x+6}{x-6}-\frac{6}{x\left(x-6\right)}=\frac{1}{x}\)

=>\(\frac{x\left(x+6\right)}{x\left(x-6\right)}-\frac{6}{x\left(x-6\right)}=\frac{x-6}{x\left(x-6\right)}\)

=>\(x^2+6x-6=x-6\)

=>\(x^2+5x=0\)

=>x(x+5)=0

=>\(\left[\begin{array}{l}x=0\\ x+5=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-5\left(nhận\right)\end{array}\right.\)

11: ĐKXĐ: x∉{0;7}

Ta có: \(\frac{x+7}{x-7}-\frac{7}{x^2-7x}=\frac{1}{x}\)

=>\(\frac{x+7}{x-7}-\frac{7}{x\left(x-7\right)}=\frac{1}{x}\)

=>\(\frac{x\left(x+7\right)-7}{x\left(x-7\right)}=\frac{x-7}{x\left(x-7\right)}\)

=>x(x+7)-7=x-7

=>x(x+7)=x

=>x(x+7)-x=0

=>x(x+6)=0

=>\(\left[\begin{array}{l}x=0\\ x+6=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-6\left(nhận\right)\end{array}\right.\)

12: ĐKXĐ: x∉{0;-4}

ta có: \(\frac{x+5}{x}-\frac{x-7}{x+4}=\frac{x^2+35}{x^2+4x}\)

=>\(\frac{x+5}{x}-\frac{x-7}{x+4}=\frac{x^2+35}{x\left(x+4\right)}\)

=>\(\frac{\left(x+5\right)\left(x+4\right)-x\left(x-7\right)}{x\left(x+4\right)}=\frac{x^2+35}{x\left(x+4\right)}\)

=>\(\left(x+5\right)\left(x+4\right)-x\left(x-7\right)=x^2+35\)

=>\(x^2+9x+20-x^2+7x=x^2+35\)

=>\(x^2+35=16x+20\)

=>\(x^2-16x+15=0\)

=>(x-1)(x-15)=0

=>\(\left[\begin{array}{l}x-1=0\\ x-15=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x...

21 tháng 7

có vô số tự nhiên lớn hơn 2002 nha bn

21 tháng 7
Dàn ý chung cho bài văn miêu tả thường gồm ba phần: mở bài, thân bài và kết bài.  1. Mở bài:
  • Giới thiệu đối tượng miêu tả: Bắt đầu bằng việc giới thiệu chung về đối tượng (cảnh vật, con người, sự vật) mà bạn sẽ miêu tả. Bạn có thể nêu tên, vị trí, hoặc một vài nét đặc trưng nổi bật của đối tượng.
  • Cảm xúc ban đầu: Nêu cảm xúc của bạn khi tiếp xúc, nhìn thấy đối tượng lần đầu tiên, hoặc trong một khoảnh khắc đặc biệt. 
2. Thân bài:
  • Miêu tả chi tiết: Phần này tập trung vào việc miêu tả đối tượng một cách cụ thể, sinh động. Có thể chia nhỏ thành các phần như sau:
    • Tả bao quát: Mô tả tổng thể về hình dáng, kích thước, màu sắc của đối tượng.
    • Tả chi tiết: Đi sâu vào từng bộ phận, đặc điểm riêng của đối tượng, sử dụng các giác quan (thị giác, thính giác, khứu giác, xúc giác) để làm cho bài văn thêm phong phú.
    • Tả hoạt động, thói quen: Nếu đối tượng là người hoặc con vật, hãy miêu tả các hoạt động, hành vi, thói quen của chúng.
  • Cảm xúc, suy nghĩ: Chia sẻ cảm xúc, suy nghĩ của bạn về đối tượng, những kỷ niệm, liên tưởng mà đối tượng gợi lên. 
3. Kết bài:
  • Khẳng định lại tình cảm: Nêu lại tình cảm, ấn tượng của bạn về đối tượng.
  • Mở rộng, liên hệ: Có thể mở rộng bằng cách liên hệ đối tượng với những sự vật, sự việc khác, hoặc nêu lên mong ước, suy nghĩ của bạn về đối tượng. 
  • tích cho mình nhé
P
Phong
CTVHS
21 tháng 7

`\sqrt{x^2-x+1}=1` (ĐK: `x\inR)`

`<=>x^2-x+1=1^2`

`<=>x^2-x+1=1`

`<=>x^2-x=1-1`

`<=>x^2-x=0`

`<=>x(x-1)=0`

`TH1:x=0`

`TH2;x-1=0`

`<=>x=1`

Vậy: `S={0;1}`

P
Phong
CTVHS
21 tháng 7

`2^3:8xx(12^3-3^3xx2^6+1284)`

`=8:8xx[12^3-3^3xx(2^2)^3+1284)`

`=8:8xx[12^3-(3xx2^2)^3+1284]`

`=8:8xx[12^3-(3xx4)^3+1284]`

`=8:8xx(12^3-12^3+1284)`

`=8:8xx(0+1284)`

`=8:8xx1284`

`=1xx1284`

`=1284`

Vậy: `...`

21 tháng 7

2^3 : 8 x (12^3 - 3^3 x 2^6 + 1284)

= 1 x (1728 - 1728 + 1284)

= 1284

P
Phong
CTVHS
21 tháng 7

`a)` Ta có:

`-2^30=-(2^3)^10=-8^10`

`-3^20=-(3^2)^10=-9^10`

Vì: `-8> -9` do đó: `-8^10> -9^10`

Hay: `-2^30> -3^20`

Vậy: `...`

`b)` Ta có:

`(-5)^9=-5^9`

`(-2)^18=2^18`

Vì: `-5^9<0` mà `2^18>0`

Do đó: `-5^9<2^18`

Hay: `(-5)^9<(-2)^18`

Vậy: `...`

`c)` Ta có:

`6^10=6^(2*5)=(6^2)^5=36^5`

Vì: `35<36`

Do đó: `35^5<36^5`

Hay: `35^5<6^10`

Vậy: `...`

21 tháng 7

100 000 x 111 111 = 11 111 100 000

21 tháng 7

100 000 x 111 111= 11111100000

P
Phong
CTVHS
21 tháng 7

`16x^4-16x^2+1=0`

`<=>16(x^2)^2-16x^2+1=0`

Đặt: `t=x^2` với `t>=0`

Ta được phương trình: `16t^2-16t+1=0`

`\Delta=(-16)^2-4*16*1=192>0`

Có hai nghiệm phân biệt:

`t_1=(-(-16)+\sqrt{192})/(2*16)=(2+\sqrt{3})/4(tm)`

`t_2=(-(-16)+\sqrt{192})/(2*16)=(2-\sqrt{3})/4(tm)`

Với `t=(2+\sqrt{3})/4=(4+2\sqrt{3})/8`

Suy ra: `x^2=(4+2\sqrt{3})/8`

`<=>x=+-\sqrt{(4+2\sqrt{3})/8}`

`<=>x=+-\sqrt{(\sqrt{3}+1)^2/8}`

`<=>x=+-(\sqrt{3}+1)/(2\sqrt{2})`

Với `t=(2-\sqrt{3})/4=(4-2\sqrt{3})/8`

Suy ra: `x^2=(4-2\sqrt{3})/8`

`<=>x=+-\sqrt{(4-2\sqrt{3})/8}`

`<=>x=+-\sqrt{(\sqrt{3}-1)^2/8}`

`<=>x=+-(\sqrt{3}-1)/(2\sqrt{2})`

Vậy: `...`

P
Phong
CTVHS
21 tháng 7

`a)` Ta có

`B(3)={0;3;6;9;12;..}`

Bội của `3` là các số chia hết cho `3`

Mà: `48\vdots3` do đó `48` là bội của `3`

Suy ra: `48` là bội của `3` __ĐÚNG__

`b)`Ta có:

`B(50)={0;50;100;...}`

Bội của `50` là các số chia hết cho `50`

Mà `100\vdots50` do đó `100` là bội của `50`

Suy ra: `100` là bội của `50` __ĐÚNG__

`c)` Ta có:

`Ư(35)={+-1;+-5;+-7;+-35}`

Do đó: `5\in Ư(35)`

`5` là ước của `35` __ĐÚNG__

`d)` Ta có:

`Ư(32)={+-1;+-2;+-4;+-8;+-16;+-32}`

Do đó: `4\in Ư(32)`

`4` là ước của `32` __ĐÚNG__