A=1/4^2+1/6^2+1/8^2+...+1/2026^2. so sánh A với 1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{HAB}=\widehat{HAC}\)
=>AH là phân giác của góc BAC
a) Xét hai tam giác vuông: \(\Delta AHB\) và \(\Delta AHC\) có:
\(AB=AC\left(gt\right)\)
\(AH\) là cạnh chung
\(\Rightarrow\Delta AHB=\Delta AHC\) (cạnh huyền - cạnh góc vuông)
b) Do \(\Delta AHB=\Delta AHC\left(cmt\right)\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\) (hai góc tương ứng)
\(\Rightarrow AH\) là tia phân giác của \(\widehat{BAC}\)

Tỉ số giữa phần diện tích trồng hoa hồng và diện tích khu vườn là:
\(\dfrac{3}{4+3}=\dfrac{3}{7}\)
Tỉ số giữa phần diện tích trồng hoa cúc và diện tích khu vườn là:
\(\dfrac{3}{7}\cdot\dfrac{5}{6}=\dfrac{5}{14}\)
Diện tích trồng hoa đồng tiền chiếm:
\(1-\dfrac{3}{7}-\dfrac{5}{14}=\dfrac{4}{7}-\dfrac{5}{14}=\dfrac{3}{14}\)(khu vườn)
Diện tích khu vườn là:
\(90:\dfrac{3}{14}=90\cdot\dfrac{14}{3}=420\left(m^2\right)\)

Chúng ta cần tìm giá trị của biểu thức:
\(\frac{a^{2} + b^{2}}{a b}\)
khi \(a , b\) là các số nguyên dương sao cho \(a^{2} + b^{2}\) chia hết cho \(a b\), tức là biểu thức này phải là một số nguyên.
Bước 1: Viết lại biểu thức
\(\frac{a^{2} + b^{2}}{a b} = \frac{a^{2}}{a b} + \frac{b^{2}}{a b} = \frac{a}{b} + \frac{b}{a}\)
Ta đặt \(x = \frac{a}{b} + \frac{b}{a}\), trong đó \(x\) phải là một số nguyên.
Bước 2: Định nghĩa \(x\)
Ta biết rằng bất đẳng thức AM-GM cho ta:
\(\frac{a}{b} + \frac{b}{a} \geq 2\)
Do \(x\) là số nguyên dương, giá trị nhỏ nhất của \(x\) là 2.
Bước 3: Tìm các giá trị hợp lệ
Ta xét trường hợp nhỏ nhất:
\(\frac{a}{b} + \frac{b}{a} = 2\)
Điều kiện này chỉ xảy ra khi \(a = b\). Thay vào biểu thức:
\(\frac{a^{2} + a^{2}}{a^{2}} = \frac{2 a^{2}}{a^{2}} = 2\)
Kết luận:
Vì bài toán yêu cầu \(\frac{a^{2} + b^{2}}{a b}\) là một số nguyên, giá trị hợp lệ duy nhất là 2.
Vậy thương của phép chia luôn bằng 2.

Tham khảo
Ta có AB<BC<AC mà điểm B nằm trên đường thẳng AC do đó B nằm giữa A và C

Gọi H là hình chiếu vuông góc của O lên d
\(\Rightarrow AA_1||OH||BB_1\)
Áp dụng định lý Thales trong tam giác \(ABA_1\)
\(\dfrac{OH}{AA_1}=\dfrac{BH}{AB}\)
Áp dụng định lý Thales trong tam giác \(ABB_1\)
\(\dfrac{OH}{BB1}=\dfrac{AH}{AB}\)
\(\Rightarrow\dfrac{OH}{AA_1}+\dfrac{OH}{BB_1}=\dfrac{BH}{AB}+\dfrac{AH}{AB}\)
\(\Rightarrow OH.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=1\)
\(\Rightarrow OH=\dfrac{a.b}{a+b}\)
Do a, b không đổi \(\Rightarrow OH\) không đổi
Hay khoảng cách từ O đến d không đổi khi A, B chạy trên d

Giải:
(\(x-3\))\(^5\) = 4.(\(x-3\))\(^3\)
(\(x-3\))\(^5\) - 4.(\(x-3\))\(^3\) = 0
(\(x-3\))\(^3\).[(\(x-3)^2\) - 4] = 0
\(\left[\begin{array}{l}x-3=0\\ \left(x-3\right)^2=4\end{array}\right.\)
\(\left[\begin{array}{l}x=3\\ x-3=-2\\ x-3=2\end{array}\right.\)
\(\left[\begin{array}{l}x=3\\ x=-2+3\\ x=2+3\end{array}\right.\)
\(\left[\begin{array}{l}x=3\\ x=1\\ x=5\end{array}\right.\)
Vậy \(x\in\left\lbrace1;3;5\right\rbrace\)
(x - 3)⁵ = 4(x - 3)³
(x - 3)⁵ - 4(x - 3)³ = 0
(x - 3)³.[(x - 3)² - 4] = 0
(x - 3)³.(x - 3 - 2)(x - 3 + 2) = 0
(x - 3)³(x - 5)(x - 1) = 0
(x - 3)³ = 0 hoặc x - 5 = 0 hoặc x - 1 = 0
*) (x - 3)³ = 0
x - 3 = 0
x = 3
*) x - 5 = 0
x = 5
*) x - 1 = 0
x = 1
Vậy x = 1; x = 3; x = 5
\(A=\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2026^2}\)
\(=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1013^2}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1013^2}\right)\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{1013^2}< \dfrac{1}{1012\cdot1013}=\dfrac{1}{1012}-\dfrac{1}{1013}\)
Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1013^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1012}-\dfrac{1}{1013}\)
=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1013^2}< 1-\dfrac{1}{1013}< 1\)
=>\(A=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1013^2}\right)< \dfrac{1}{4}\cdot1=\dfrac{1}{4}\)