phân tích đa thức thành nhân tử
x(x^2+x)^2-2(x^2+x)-15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3(2x-1)^2-6x(2x-3)=6\)
=> \(3(4x^2-4x+1)-(12x^2-18x)=6\)
=> \(12x^2-12x+3-12x^2+18x=6\)
=> \(6x+3=6\implies6x=3\implies x=\frac12\)
=>\(x=\frac12\)
\((2x-1)^2-(x+3)^2=0\)
=> \([(2x−1)−(x+3)]⋅[(2x−1)+(x+3)]=0\)
=> \((x−4)(3x+2)=0\)
=> \(x=4hoặcx=-\frac23\)
=> \(x=4;-\frac23\)
\((x-5)^2-x^2+25=0\)
=> \((x^2-10x+25)-x^2+25=0\)
=> \(−10x+50=0⟹x=5\)
=> \(x=5\)
\(4(2+3x)(3x-2)-(6x+1)^2=7\)
=> \(4(9x^2-4)-(36x^2+12x+1)=7\)
=> \(36x^2-16-36x^2-12x-1=7\)
=> \(−12x−17=7\)
=> \(−12x=24⟹x=−2\)
=> \(x=-2\)
\(3 \left(\right. 2 x - 1 \left.\right)^{2} - 6 x \left(\right. 2 x - 3 \left.\right) = 6\)
\(12 x^{2} - 12 x + 3 - \left(\right. 12 x^{2} - 18 x \left.\right) = 6\) \(12 x^{2} - 12 x + 3 - 12 x^{2} + 18 x = 6\) \(\left(\right. - 12 x + 18 x \left.\right) + 3 = 6 \Rightarrow 6 x + 3 = 6\) \(6 x = 3 \Rightarrow x = \boxed{\frac{1}{2}}\)
\(\left(\right. 2 x - 1 \left.\right)^{2} - \left(\right. x + 3 \left.\right)^{2} = 0\)
Dạng hiệu bình phương: \(A^{2} - B^{2} = \left(\right. A - B \left.\right) \left(\right. A + B \left.\right)\)
\(\left[\right. \left(\right. 2 x - 1 \left.\right) - \left(\right. x + 3 \left.\right) \left]\right. \cdot \left[\right. \left(\right. 2 x - 1 \left.\right) + \left(\right. x + 3 \left.\right) \left]\right. = 0\) \(\left(\right. x - 4 \left.\right) \left(\right. 3 x + 2 \left.\right) = 0\) \(\Rightarrow x = 4 \text{ho}ặ\text{c} x = - \frac{2}{3}\)
✅ Nghiệm: \(x = \boxed{4} \&\text{nbsp};\text{ho}ặ\text{c}\&\text{nbsp}; \boxed{- \frac{2}{3}}\)
\(\left(\right. x - 5 \left.\right)^{2} - x^{2} + 25 = 0\)
Khai triển:
\(x^{2} - 10 x + 25 - x^{2} + 25 = 0 \Rightarrow - 10 x + 50 = 0 \Rightarrow 10 x = 50 \Rightarrow x = \boxed{5}\)
\(4 \left(\right. 2 + 3 x \left.\right) \left(\right. 3 x - 2 \left.\right) - \left(\right. 6 x + 1 \left.\right)^{2} = 7\)
Khai triển \(4 \left(\right. 2 + 3 x \left.\right) \left(\right. 3 x - 2 \left.\right)\):
→ Nhân với 4:
\(4 \left(\right. 9 x^{2} - 4 \left.\right) = 36 x^{2} - 16\)
Khai triển \(\left(\right. 6 x + 1 \left.\right)^{2} = 36 x^{2} + 12 x + 1\)
\(36 x^{2} - 16 - \left(\right. 36 x^{2} + 12 x + 1 \left.\right) = 7\) \(36 x^{2} - 16 - 36 x^{2} - 12 x - 1 = 7 \Rightarrow - 17 - 12 x = 7 \Rightarrow - 12 x = 24 \Rightarrow x = \boxed{- 2}\)
3.(\(x-5\))\(^2\) + 2\(x\) (\(x-5\)) = 0
(\(x-5\))[3.(\(x-5)\) + 2\(x\)] = 0
(\(x-5)\).[3\(x-15\) + 2\(x\)] = 0
(\(x-5\))[(3\(x\) + 2\(x\)) - 15] = 0
(\(x-5\))[5\(x\) - 15] = 0
\(\left[\begin{array}{l}x-5=0\\ 5x-15=0\end{array}\right.\)
\(\left[\begin{array}{l}x=5\\ 5x=15\end{array}\right.\)
\(\left[\begin{array}{l}x=5\\ x=15:5\end{array}\right.\)
\(\left[\begin{array}{l}x=5\\ x=3\end{array}\right.\)
Vậy \(x\) ∈ {3; 5}
Bài 6:
a: \(A=n^2\left(n-1\right)+2n\left(1-n\right)\)
\(=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2-2n\right)=n\left(n-1\right)\left(n-2\right)\)
Vì n;n-1;n-2 là ba số nguyên liên tiếp
nên n(n-1)(n-2)⋮3!
=>n(n-1)(n-2)⋮6
=>A⋮6
b: \(M=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+12x-x-1\right)\left(12x^2+8x+3x+2\right)-4\)
\(=\left(12x^2+11x-1\right)\left(12x^2+11x+2\right)-4\)
\(=\left(12x^2+11x\right)^2+2\left(12x^2+11x\right)-\left(12x^2+11x\right)-2-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)
Bài 4:
a: \(A=x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)
\(=\left(x-y\right)^2\cdot\left(x-y\right)+xy\left(y-x\right)\)
\(=\left(x-y\right)^3-xy\left(x-y\right)\)
Khi x-y=5 và xy=4 thì \(A=5^3-4\cdot5=125-20=105\)
b: \(B=65^2-35^2+83^2-17^2\)
\(=\left(65-35\right)\left(65+35\right)+\left(83-17\right)\left(83+17\right)\)
\(=100\cdot30+100\cdot66=100\cdot96=9600\)
Bài 3:
a: \(4x\cdot\left(x+3\right)-x-3=0\)
=>4x(x+3)-(x+3)=0
=>(x+3)(4x-1)=0
=>\(\left[\begin{array}{l}x+3=0\\ 4x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=\frac14\end{array}\right.\)
b: \(x^2+4x=0\)
=>x(x+4)=0
=>\(\left[\begin{array}{l}x=0\\ x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-4\end{array}\right.\)
c: \(9x^2-\left(2x-1\right)^2=0\)
=>\(\left(3x\right)^2-\left(2x-1\right)^2=0\)
=>(3x-2x+1)(3x+2x-1)=0
=>(x+1)(5x-1)=0
=>\(\left[\begin{array}{l}x+1=0\\ 5x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-1\\ x=\frac15\end{array}\right.\)
d: \(\left(x^3-1\right)-\left(x-1\right)\left(x^2-5\right)=0\)
=>\(\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-5\right)=0\)
=>\(\left(x-1\right)\left(x^2+x+1-x^2+5\right)=0\)
=>(x-1)(x+6)=0
=>\(\left[\begin{array}{l}x-1=0\\ x+6=0\end{array}\right.=>\left[\begin{array}{l}x=1\\ x=-6\end{array}\right.\)
\(3 \left(\right. x - 6 \left.\right)^{2} = 60 - 10 x\)
\(3 \left(\right. x^{2} - 12 x + 36 \left.\right) = 60 - 10 x\)
\(3 x^{2} - 36 x + 108 = 60 - 10 x\)
\(3 x^{2} - 36 x + 108 - 60 + 10 x = 0\)
\(3 x^{2} - 26 x + 48 = 0\) \(\Delta = 100\)
Vậy \(x = \frac{26 \pm 10}{6}\) \(x = 6 \text{ho}ặ\text{c} x = \frac{8}{3}\)
chúc bn hc tốt
3(\(x-6\))\(^2\) = 60 - 10\(x\)
3(\(x-6\))\(^2\) = -10(\(x-6\))
3(\(x-6\))\(^2\) + 10(\(x-6\)) = 0
(\(x-6\)).(3\(x\) - 18 + 10) = 0
(\(x-6\))[3\(x\) - (18 - 10)] = 0
(\(x-6\))[3\(x\) - 8] = 0
\(\left[\begin{array}{l}x-6=0\\ 3x-8=0\end{array}\right.\)
\(\left[\begin{array}{l}x=6\\ x=\frac83\end{array}\right.\)
Vậy \(x\) ∈ {8/3; 6}
Ta có: \(2y^2\left(x-2\right)-4xy+8y\)
\(=2y^2\left(x-2\right)-4y\left(x-2\right)\)
\(=\left(x-2\right)\left(2y^2-4y\right)=2y\left(y-2\right)\left(x-2\right)\)
2\(x^3\) + 16
= 2.(\(x^3\) + 8)
= 2.(\(x^3\) + 2\(^3\))
= 2.(\(x+2\))(\(x^2\) - 2\(x\) + 2\(^2\))
= 2.(\(x+2\))(\(x^2\) - 2\(x\) + 4)
25\(x^2\) - 4y\(^2\)
= (5\(x\))\(^2\) - (2y)\(^2\)
= (5\(x-2y\)).(5\(x\) + 2y)
\(25x^2-4y^2\)
\(=\left(5x\right)^2-\left(2y\right)^2\)
=(5x-2y)(5x+2y)
Câu 1:
(2\(x\) - 8)\(^2\)
= (2\(x)^2\) - 2.2\(x\) .8 + 8\(^2\)
= 4\(x^2\) - (2.2.8)\(x\) + 64
= 4\(x^2\) - 4.8\(x\) + 64
= 4\(x^2\) - 32\(x\) + 64
Câu 2:
(\(x-8)^2\)
= \(x^2\) - 2.\(x.8\) + 8\(^2\)
= \(x^2\) - 2.8.\(x\) + 64
= \(x^2\) - 16\(x\) + 64
\(\left\vert-4x\right\vert=x+2\)
\(4x=x+2\)
\(3x=2\)
\(x=\frac23\)
tick giùm mình nha bạn
Giải:
Đặt y = x^2 + x
Khi đó, đa thức trở thành:
xy^2 - 2y - 15
=xy^2 - 5y + 3y -15
= y(xy - 5) + 3(xy -5)
= (y+ 3)(xy -5)
Thay y vào, ta được:
(x^2 - x + 3)[x(x^2 - x) - 5]
=(x^2 - x + 3)(x^3 - x^2 - 5)
Sửa đề: \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)^2-5\left(x^2+x\right)+3\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-5\right)+3\left(x^2+x-5\right)\)
\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)