100. 000✱111111=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


`16x^4-16x^2+1=0`
`<=>16(x^2)^2-16x^2+1=0`
Đặt: `t=x^2` với `t>=0`
Ta được phương trình: `16t^2-16t+1=0`
`\Delta=(-16)^2-4*16*1=192>0`
Có hai nghiệm phân biệt:
`t_1=(-(-16)+\sqrt{192})/(2*16)=(2+\sqrt{3})/4(tm)`
`t_2=(-(-16)+\sqrt{192})/(2*16)=(2-\sqrt{3})/4(tm)`
Với `t=(2+\sqrt{3})/4=(4+2\sqrt{3})/8`
Suy ra: `x^2=(4+2\sqrt{3})/8`
`<=>x=+-\sqrt{(4+2\sqrt{3})/8}`
`<=>x=+-\sqrt{(\sqrt{3}+1)^2/8}`
`<=>x=+-(\sqrt{3}+1)/(2\sqrt{2})`
Với `t=(2-\sqrt{3})/4=(4-2\sqrt{3})/8`
Suy ra: `x^2=(4-2\sqrt{3})/8`
`<=>x=+-\sqrt{(4-2\sqrt{3})/8}`
`<=>x=+-\sqrt{(\sqrt{3}-1)^2/8}`
`<=>x=+-(\sqrt{3}-1)/(2\sqrt{2})`
Vậy: `...`

`a)` Ta có
`B(3)={0;3;6;9;12;..}`
Bội của `3` là các số chia hết cho `3`
Mà: `48\vdots3` do đó `48` là bội của `3`
Suy ra: `48` là bội của `3` __ĐÚNG__
`b)`Ta có:
`B(50)={0;50;100;...}`
Bội của `50` là các số chia hết cho `50`
Mà `100\vdots50` do đó `100` là bội của `50`
Suy ra: `100` là bội của `50` __ĐÚNG__
`c)` Ta có:
`Ư(35)={+-1;+-5;+-7;+-35}`
Do đó: `5\in Ư(35)`
`5` là ước của `35` __ĐÚNG__
`d)` Ta có:
`Ư(32)={+-1;+-2;+-4;+-8;+-16;+-32}`
Do đó: `4\in Ư(32)`
`4` là ước của `32` __ĐÚNG__

\(=-9+\left\lbrack\left(-54:256\right)+7\times4]\right.\)
\(=-9+0,2109375+28\)
\(=0,2109375+28-9\)
\(=0,2109375+19\)
\(=19,2109375\)
mik làm luôn ko viết lại đề nha
= -9 +(-54: 256 +7 x 4)
=-9 +( -27/128 + 28)
=-9 +( 3557/128)
=2405/128

Bổ sung đề: M,N∈BC
a: ΔABC cân tại A
=>\(\hat{ABC}=\hat{ACB}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-120^0}{2}=30^0\)
Ta có: \(\hat{BAM}+\hat{MAC}=\hat{BAC}\)
=>\(\hat{MAC}=120^0-90^0=30^0\)
Ta có: \(\hat{BAN}+\hat{CAN}=\hat{BAC}\)
=>\(\hat{BAN}=120^0-90^0=30^0\)
Ta có: \(\hat{BAN}+\hat{MAN}+\hat{MAC}=\hat{BAC}\)
=>\(\hat{MAN}=120^0-30^0-30^0=60^0\)
Xét ΔANB và ΔAMC có
\(\hat{NAB}=\hat{MAC}\left(=30^0\right)\)
AB=AC
\(\hat{ABN}=\hat{ACM}\left(=30^0\right)\)
Do đó: ΔANB=ΔAMC
=>AN=AM
Xét ΔANM có AN=AM và \(\hat{MAN}=60^0\)
nên ΔANM đều
b: ΔANB=ΔAMC
=>NB=MC
Xét ΔNAB có \(\hat{NAB}=\hat{NBA}\left(=30^0\right)\)
nên ΔNAB cân tại N
=>NA=NB
mà NA=NM(ΔNAM đều)
nên NB=NM
=>BN=NM=MC

Bài 1:
`a)(2x+1):3+2=5`
`(2x+1):3=5-2`
`(2x+1):3=3`
`2x+1=3*3`
`2x+1=9`
`2x=9-1`
`2x=8`
`x=8/2`
`x=4`
Vậy: `...`
`b)(2x)/3=3x-1`
`2x=3(3x-1)`
`2x=9x-3`
`9x-2x=3`
`7x=3`
`x=3/7`
Vậy: `...`
`c)(x+5)/15+(x+6)/14=(x+7)/13+(x+8)/12`
`((x+5)/15+1)+((x+6)/14+1)=((x+7)/13+1)+((x+8)/12+1)`
`(x+20)/15+(x+20)/14=(x+20)/13+(x+20)/12`
`(x+20)/15+(x+20)/14-(x+20)/13-(x+20)/12=0`
`(x+20)(1/15+1/14-1/13-1/12)=0`
`(x+20)=0`
`x=-20`
Vậy: `...`
Bài 4:
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\cdots+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=>\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\cdots+\frac{3}{x\left(x+3\right)}=\frac{101}{1540}\cdot3=\frac{303}{1540}\)
=>\(\frac15-\frac18+\frac18-\frac{1}{11}+\cdots+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
=>\(\frac15-\frac{1}{x+3}=\frac{303}{1540}\)
=>\(\frac{1}{x+3}=\frac15-\frac{303}{1540}=\frac{1}{308}\)
=>x+3=308
=>x=305
Bài 3:
a: (x-2)(y+1)=3
=>(x-2;y+1)∈{(1;3);(3;1);(-1;-3);(-3;-1)}
=>(x;y)∈{(3;2);(5;0);(1;-4);(-1;-2)}
b: xy+x+y+1=5
=>x(y+1)+(y+1)=5
=>(x+1)(y+1)=5
=>(x+1;y+1)∈{(1;5);(5;1);(-1;-5);(-5;-1)}
=>(x;y)∈{(0;4);(4;0);(-2;-6);(-6;-2)}
c: xy+3y+x=2
=>y(x+3)+x+3=2+3
=>(x+3)(y+1)=5
=>(x+3;y+1)∈{(1;5);(5;1);(-1;-5);(-5;-1)}
=>(x;y)∈{(-2;4);(2;0);(-4;-6);(-8;-2)}
Bài 2:
a: \(\frac{x-2}{-2}=\frac{3x+1}{3}\)
=>-2(3x+1)=3(x-2)
=>-6x-2=3x-6
=>-6x-3x=-6+2
=>-9x=-4
=>\(x=\frac49\)
b: \(\frac{x-5}{15}+\frac{x-7}{13}=\frac{x-9}{11}+\frac{x-11}{9}\)
=>\(\left(\frac{x-5}{15}-1\right)+\left(\frac{x-7}{13}-1\right)=\left(\frac{x-9}{11}-1\right)+\left(\frac{x-11}{9}-1\right)\)
=>\(\frac{x-20}{15}+\frac{x-20}{13}=\frac{x-20}{11}+\frac{x-20}{9}\)
=>x-20=0
=>x=20
c: \(\frac{x+9}{11}+\frac{x+12}{8}+\frac{x+10}{5}=-4\)
=>\(\left(\frac{x+9}{11}+1\right)+\left(\frac{x+12}{8}+1\right)+\left(\frac{x+10}{5}+2\right)=-4+4=0\)
=>\(\frac{x+20}{11}+\frac{x+20}{8}+\frac{x+20}{5}=0\)
=>x+20=0
=>x=-20
d: \(\left(2^{3x+2}-2\right):6+22=\frac{1}{\left(-3\right)^2}\cdot3^4\)
=>\(\left(2^{3x+2}-2\right):6+22=\frac{81}{9}=9\)
=>\(2^{3x+2}-2=\left(9-22\right)\cdot6=-13\cdot6=-78\)
=>\(2^{3x+2}=-78+2=-76\) (vô lý)
=>x∈∅

a) 27 x 36 + 27 x 64
= 27 x (36 + 64)
= 27 X 100
= 2 700
b) 25 x 37 + 25 x 36 - 150
= 25 x 37 + 25 x 36 - 25 x 5
= 25 x (37 + 36 - 5)
= 25 x 68
= 1700
c) 425 x 7 x 4 - 170 x 60
= 1700 x 7 - 1700 x 6
= 1700 x (7 - 6)
= 1700 x 1
= 1700
d) 8 x 9 x 14 + 6 x 17 x 12 + 19 x 4 x 18
= 72 x 14 + 72 x 17 + 72 x 19
= 72 x (14 + 17 + 19)
= 72 x 50
= 3600

`a)6/(x-7)=(-3)/7` (ĐK: `x\ne7)`
`x-7=6:(-3)/7`
`x-7=-14`
`x=-14+7`
`x=-7(tm)`
Vậy: `...`
`b)(-3)/5-x=1/2`
`x=(-3)/5-1/2`
`x=(-6)/10-5/10`
`x=(-11)/10`
Vậy: `...`
`c)x-3/10=7/15*3/14`
`x-3/10=1/10`
`x=3/10+1/10`
`x=4/10`
`x=2/5`
Vậy: `...`
`d)5/14-x=(-17)/36:51/18`
`5/14-x=(-17)/36*18/51`
`5/14-x=-1/6`
`x=5/14+1/6`
`x=11/21`
Vậy: `..`
`d)-3/4x+1/4(x-1)=-12/5`
`-3/4x+1/4x-1/4=-12/5`
`-1/2x-1/4=-12/5`
`1/2x+1/4=12/5`
`1/2x=12/5-1/4`
`1/2x=43/20`
`x=43/20:1/2`
`x=43/10`
Vậy: `..`
`f)(2x-4/9)(3-11x)=0`
`TH1:2x-4/9=0`
`2x=4/9`
`x=4/9:2`
`x=2/9`
`TH2:3-11x=0`
`11x=3`
`x=3/11`
Vậy: `...`
100 000 x 111 111 = 11 111 100 000
100 000 x 111 111= 11111100000