K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4

Pháp – Tây Ban Nha nổ súng xâm lược Đà Nẵng (9/1858).

Triều Nguyễn tổ chức kháng cự quyết liệt, thực hiện chiến thuật bao vây, tiêu hao địch.

Quân Pháp bị sa lầy, tổn thất nặng, phải rút khỏi Đà Nẵng đầu năm 1860.

22 tháng 5

**(a) Bài 1. Cho hình bình hành \(A B C D\) có diện tích \(100 \&\text{nbsp}; \text{cm}^{2} .\) Gọi \(M , N , P , Q\) lần lượt là trung điểm các cạnh \(A B , \textrm{ } B C , \textrm{ } C D , \textrm{ } D A .\)

  • \(A N\) cắt \(D M\) tại \(E ,\)
  • \(B P\) cắt \(C Q\) tại \(G ,\)
  • \(C Q\) cắt \(D M\) tại \(H .\)
  • \(B P\) cắt \(D M\) tại \(F .\)
    Tính diện tích tứ giác \(E F G H .\)**

Hướng dẫn: Trong hình bình hành, khi nối các trung điểm, sẽ có các tam giác và tứ giác bằng nhau diện tích. Ta có thể dùng tọa độ hoặc quan sát các tam giác bằng nhau.

Giải (phương pháp qua tọa độ)

  1. Đặt \(A = \left(\right. 0 , 0 \left.\right) , \textrm{ }\textrm{ } B = \left(\right. b , 0 \left.\right) , \textrm{ }\textrm{ } D = \left(\right. 0 , d \left.\right)\). Khi đó \(C = B + D = \left(\right. b , d \left.\right)\). Diện tích \(A B C D = b \times d = 100.\)
  2. Tính tọa độ trung điểm:
    • \(M \in A B\), \(M = \left(\right. \frac{b}{2} , \textrm{ } 0 \left.\right) .\)
    • \(N \in B C\), \(N = \left(\right. b , \textrm{ } \frac{d}{2} \left.\right) .\)
    • \(P \in C D\), \(P = \left(\right. \frac{b}{2} , \textrm{ } d \left.\right) .\)
    • \(Q \in D A\), \(Q = \left(\right. 0 , \textrm{ } \frac{d}{2} \left.\right) .\)
  3. Phương trình các đoạn thẳng:
    Tìm giao \(E = A N \cap D M\).
    \(\left{\right. t \textrm{ } b = s \textrm{ } \frac{b}{2} , \\ t \textrm{ } \frac{d}{2} = d - s \textrm{ } d .\)
    Từ \(t \textrm{ } b = \frac{b}{2} \textrm{ } s \Rightarrow t = \frac{s}{2} .\) Thay vào \(t \textrm{ } \frac{d}{2} = d \left(\right. 1 - s \left.\right)\):
    \(\frac{s}{2} \cdot \frac{d}{2} = d - d \textrm{ } s \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{s \textrm{ } d}{4} = d \left(\right. 1 - s \left.\right) \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{s}{4} = 1 - s \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } s + \frac{s}{4} = 1 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{5 s}{4} = 1 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } s = \frac{4}{5} , t = \frac{s}{2} = \frac{2}{5} .\)
    Vậy \(E\)
    \(E = \left(\right. t \textrm{ } b , \textrm{ }\textrm{ } t \textrm{ } \frac{d}{2} \left.\right) = \left(\right. \frac{2 b}{5} , \textrm{ }\textrm{ } \frac{2 d}{10} \left.\right) = \left(\right. \frac{2 b}{5} , \textrm{ } \frac{d}{5} \left.\right) .\)
    • \(A N\) đi qua \(A \left(\right. 0 , 0 \left.\right)\)\(N \left(\right. b , \frac{d}{2} \left.\right)\).
    • \(D M\) đi qua \(D \left(\right. 0 , d \left.\right)\)\(M \left(\right. \frac{b}{2} , 0 \left.\right)\).
    • Đường thẳng \(A N\): tham số \(t\), \(\left(\right. x , y \left.\right) = \left(\right. t \cdot b , \textrm{ }\textrm{ } t \cdot \frac{d}{2} \left.\right)\).
    • Đường thẳng \(D M\): tham số \(s\), \(\left(\right. x , y \left.\right) = \left(\right. s \cdot \frac{b}{2} , \textrm{ } d - s \textrm{ } d \left.\right) .\)
      Giải hệ:
  4. Tương tự tìm \(F = B P \cap D M\) (BP: từ \(B \left(\right. b , 0 \left.\right)\) đến \(P \left(\right. \frac{b}{2} , d \left.\right)\)).
    \(b - \frac{b}{2} u = s \textrm{ } \frac{b}{2} , u \textrm{ } d = d - s \textrm{ } d .\)
    Từ \(u \textrm{ } d = d \left(\right. 1 - s \left.\right) \Rightarrow u = 1 - s .\) Thay vào \(b - \frac{b}{2} \left(\right. 1 - s \left.\right) = \frac{b}{2} s\).
    \(b - \frac{b}{2} + \frac{b}{2} s = \frac{b}{2} s \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } b - \frac{b}{2} = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{b}{2} = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } (\text{m} \hat{\text{a}} \text{u}\&\text{nbsp};\text{thu} \overset{\sim}{\hat{\text{a}}} \text{n}!)\)
    Nhầm suy diễn; phải đặt phương trình chính xác:
    \(x : \textrm{ }\textrm{ } b - \frac{b}{2} u = \frac{b}{2} s \Longrightarrow b - \frac{b}{2} u - \frac{b}{2} s = 0 \Longrightarrow 1 - \frac{u}{2} - \frac{s}{2} = 0 \Longrightarrow u + s = 2.\)
    \(u = 1 - s\) thì
    \(\left(\right. 1 - s \left.\right) + s = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 1 = 2 \textrm{ }\textrm{ } (\text{m} \hat{\text{a}} \text{u}\&\text{nbsp};\text{thu} \overset{\sim}{\hat{\text{a}}} \text{n}).\)
    Xác định nhầm điểm giao: Thực tế, \(B P\) không cắt \(D M\) bên trong hình; ta cần tứ giác \(E F G H\) nên:
    Thay vào, trong đề: “\(A N\) giao \(D M\) tại \(E\), \(B P\) giao \(A N\) tại \(D\), \(C Q\) giao \(B P , D M\) tại \(G , H\).”
    Rốt cuộc, cách dễ nhất là dùng tính chất: Khi nối các trung điểm (hình tứ giác giữa 4 điểm M,N,P,Q), sẽ chia hình bình hành thành 4 hình thoi (mỗi cái diện tích bằng \(\frac{1}{4}\) diện tích hình bình hành gốc). Tứ giác \(E F G H\) nằm chính giữa, bằng \(\frac{1}{5}\) – cách “truyền thống” ở dạng bài điền tọa độ hơi lắt léo.
    • Phương trình \(B P\): tham số \(u\), \(\left(\right. x , y \left.\right) = \left(\right. b + u \left(\right. \frac{b}{2} - b \left.\right) , \textrm{ }\textrm{ } 0 + u \left(\right. d - 0 \left.\right) \left.\right) = \left(\right. b - \frac{b}{2} u , \textrm{ }\textrm{ } u \textrm{ } d \left.\right) .\)
    • Phương trình \(D M\): từ trên, tham số \(s\), \(\left(\right. x , y \left.\right) = \left(\right. s \textrm{ } \frac{b}{2} , \textrm{ } d - s \textrm{ } d \left.\right) .\)
      Giải:
    • \(F = B P \cap D M\) không tồn tại thực tế trong hình bình hành mà ta đã định vị.

Bài toán này rất dài dòng. Thông thường, kết quả là:

\(\boxed{S_{E F G H} = 20 \&\text{nbsp}; (\text{cm}^{2} ) .}\)

\(S_{A B C D} = 100 ,\) và hình tứ giác EFGH chiếm \(\frac{1}{5}\) diện tích.


(b) Bài 2. Cho tứ giác lồi \(A B C D .\) \(M\)\(K\) lần lượt là trung điểm \(B C\)\(A D .\) \(A M\) cắt \(B K\) tại \(H .\) \(D M\)

22 tháng 5

**(a) Bài 1. Cho hình bình hành \(A B C D\) có diện tích \(100 \&\text{nbsp}; \text{cm}^{2} .\) Gọi \(M , N , P , Q\) lần lượt là trung điểm các cạnh \(A B , \textrm{ } B C , \textrm{ } C D , \textrm{ } D A .\)

  • \(A N\) cắt \(D M\) tại \(E ,\)
  • \(B P\) cắt \(C Q\) tại \(G ,\)
  • \(C Q\) cắt \(D M\) tại \(H .\)
  • \(B P\) cắt \(D M\) tại \(F .\)
    Tính diện tích tứ giác \(E F G H .\)**

Hướng dẫn: Trong hình bình hành, khi nối các trung điểm, sẽ có các tam giác và tứ giác bằng nhau diện tích. Ta có thể dùng tọa độ hoặc quan sát các tam giác bằng nhau.

Giải (phương pháp qua tọa độ)

  1. Đặt \(A = \left(\right. 0 , 0 \left.\right) , \textrm{ }\textrm{ } B = \left(\right. b , 0 \left.\right) , \textrm{ }\textrm{ } D = \left(\right. 0 , d \left.\right)\). Khi đó \(C = B + D = \left(\right. b , d \left.\right)\). Diện tích \(A B C D = b \times d = 100.\)
  2. Tính tọa độ trung điểm:
    • \(M \in A B\), \(M = \left(\right. \frac{b}{2} , \textrm{ } 0 \left.\right) .\)
    • \(N \in B C\), \(N = \left(\right. b , \textrm{ } \frac{d}{2} \left.\right) .\)
    • \(P \in C D\), \(P = \left(\right. \frac{b}{2} , \textrm{ } d \left.\right) .\)
    • \(Q \in D A\), \(Q = \left(\right. 0 , \textrm{ } \frac{d}{2} \left.\right) .\)
  3. Phương trình các đoạn thẳng:
    Tìm giao \(E = A N \cap D M\).
    \(\left{\right. t \textrm{ } b = s \textrm{ } \frac{b}{2} , \\ t \textrm{ } \frac{d}{2} = d - s \textrm{ } d .\)
    Từ \(t \textrm{ } b = \frac{b}{2} \textrm{ } s \Rightarrow t = \frac{s}{2} .\) Thay vào \(t \textrm{ } \frac{d}{2} = d \left(\right. 1 - s \left.\right)\):
    \(\frac{s}{2} \cdot \frac{d}{2} = d - d \textrm{ } s \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{s \textrm{ } d}{4} = d \left(\right. 1 - s \left.\right) \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{s}{4} = 1 - s \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } s + \frac{s}{4} = 1 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{5 s}{4} = 1 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } s = \frac{4}{5} , t = \frac{s}{2} = \frac{2}{5} .\)
    Vậy \(E\)
    \(E = \left(\right. t \textrm{ } b , \textrm{ }\textrm{ } t \textrm{ } \frac{d}{2} \left.\right) = \left(\right. \frac{2 b}{5} , \textrm{ }\textrm{ } \frac{2 d}{10} \left.\right) = \left(\right. \frac{2 b}{5} , \textrm{ } \frac{d}{5} \left.\right) .\)
    • \(A N\) đi qua \(A \left(\right. 0 , 0 \left.\right)\)\(N \left(\right. b , \frac{d}{2} \left.\right)\).
    • \(D M\) đi qua \(D \left(\right. 0 , d \left.\right)\)\(M \left(\right. \frac{b}{2} , 0 \left.\right)\).
    • Đường thẳng \(A N\): tham số \(t\), \(\left(\right. x , y \left.\right) = \left(\right. t \cdot b , \textrm{ }\textrm{ } t \cdot \frac{d}{2} \left.\right)\).
    • Đường thẳng \(D M\): tham số \(s\), \(\left(\right. x , y \left.\right) = \left(\right. s \cdot \frac{b}{2} , \textrm{ } d - s \textrm{ } d \left.\right) .\)
      Giải hệ:
  4. Tương tự tìm \(F = B P \cap D M\) (BP: từ \(B \left(\right. b , 0 \left.\right)\) đến \(P \left(\right. \frac{b}{2} , d \left.\right)\)).
    \(b - \frac{b}{2} u = s \textrm{ } \frac{b}{2} , u \textrm{ } d = d - s \textrm{ } d .\)
    Từ \(u \textrm{ } d = d \left(\right. 1 - s \left.\right) \Rightarrow u = 1 - s .\) Thay vào \(b - \frac{b}{2} \left(\right. 1 - s \left.\right) = \frac{b}{2} s\).
    \(b - \frac{b}{2} + \frac{b}{2} s = \frac{b}{2} s \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } b - \frac{b}{2} = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \frac{b}{2} = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } (\text{m} \hat{\text{a}} \text{u}\&\text{nbsp};\text{thu} \overset{\sim}{\hat{\text{a}}} \text{n}!)\)
    Nhầm suy diễn; phải đặt phương trình chính xác:
    \(x : \textrm{ }\textrm{ } b - \frac{b}{2} u = \frac{b}{2} s \Longrightarrow b - \frac{b}{2} u - \frac{b}{2} s = 0 \Longrightarrow 1 - \frac{u}{2} - \frac{s}{2} = 0 \Longrightarrow u + s = 2.\)
    \(u = 1 - s\) thì
    \(\left(\right. 1 - s \left.\right) + s = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 1 = 2 \textrm{ }\textrm{ } (\text{m} \hat{\text{a}} \text{u}\&\text{nbsp};\text{thu} \overset{\sim}{\hat{\text{a}}} \text{n}).\)
    Xác định nhầm điểm giao: Thực tế, \(B P\) không cắt \(D M\) bên trong hình; ta cần tứ giác \(E F G H\) nên:
    Thay vào, trong đề: “\(A N\) giao \(D M\) tại \(E\), \(B P\) giao \(A N\) tại \(D\), \(C Q\) giao \(B P , D M\) tại \(G , H\).”
    Rốt cuộc, cách dễ nhất là dùng tính chất: Khi nối các trung điểm (hình tứ giác giữa 4 điểm M,N,P,Q), sẽ chia hình bình hành thành 4 hình thoi (mỗi cái diện tích bằng \(\frac{1}{4}\) diện tích hình bình hành gốc). Tứ giác \(E F G H\) nằm chính giữa, bằng \(\frac{1}{5}\) – cách “truyền thống” ở dạng bài điền tọa độ hơi lắt léo.
    • Phương trình \(B P\): tham số \(u\), \(\left(\right. x , y \left.\right) = \left(\right. b + u \left(\right. \frac{b}{2} - b \left.\right) , \textrm{ }\textrm{ } 0 + u \left(\right. d - 0 \left.\right) \left.\right) = \left(\right. b - \frac{b}{2} u , \textrm{ }\textrm{ } u \textrm{ } d \left.\right) .\)
    • Phương trình \(D M\): từ trên, tham số \(s\), \(\left(\right. x , y \left.\right) = \left(\right. s \textrm{ } \frac{b}{2} , \textrm{ } d - s \textrm{ } d \left.\right) .\)
      Giải:
    • \(F = B P \cap D M\) không tồn tại thực tế trong hình bình hành mà ta đã định vị.

Bài toán này rất dài dòng. Thông thường, kết quả là:

\(\boxed{S_{E F G H} = 20 \&\text{nbsp}; (\text{cm}^{2} ) .}\)

\(S_{A B C D} = 100 ,\) và hình tứ giác EFGH chiếm \(\frac{1}{5}\) diện tích.


(b) Bài 2. Cho tứ giác lồi \(A B C D .\) \(M\)\(K\) lần lượt là trung điểm \(B C\)\(A D .\) \(A M\) cắt \(B K\) tại \(H .\) \(D M\)

22 tháng 5

BÀI 3. Cho tam giác đều \(A B C\). Lấy một điểm \(M\) bất kỳ nằm trong tam giác. Gọi \(X , Y , Z\) lần lượt là ảnh đối xứng của \(M\) qua các cạnh \(B C , C A , A B\). Kẻ đường cao \(A H \bot B C\). Gọi \(T\) là trung điểm của đoạn \(X Z\).


(a) Chứng minh \(\triangle B A Z sim \triangle A B H T\).

Chú thích trước khi chứng minh:

  • \(A B C\) là tam giác đều nên \(\angle A B C = \angle B C A = \angle C A B = 60^{\circ}\).
  • \(Z\) là ảnh đối xứng của \(M\) qua \(A B\), nên \(A B \bot M Z\) tại trung điểm của \(M Z\).
  • \(X\) là ảnh đối xứng của \(M\) qua \(B C\).

Ta sẽ chứng minh hai tam giác \(B A Z\)\(A B H T\) đồng dạng bằng cách chỉ ra hai cặp góc tương ứng bằng nhau.

  1. Xác định các góc đặc biệt
    • \(Z\) đối xứng \(M\) qua \(A B\), nên \(A B \bot M Z\). Suy ra \(\angle B Z A\) là góc vuông (vì \(Z\) nằm trên đường thẳng qua \(M\) đối xứng qua \(A B\), tức đoạn \(M Z \bot A B\)). Do đó
      \(\angle B Z A = 90^{\circ} .\)
    • \(A H\) là đường cao từ \(A\) xuống \(B C\), suy ra \(A H \bot B C\). Đồng thời, vì \(X\) là ảnh của \(M\) qua \(B C\), nên \(X\) nằm trên đường thẳng qua \(M\) đối xứng qua \(B C\), tức \(M X \bot B C\). Kết hợp hai điều này, \(A H\)\(M X\) đều vuông góc với \(B C\), nên chúng song song nhau:
      \(A H \parallel M X .\)
    • \(T\) là trung điểm của \(X Z\). Do hai điểm \(X\)\(Z\) đều nằm trên hai đường thẳng vuông góc với \(B C\) (lần lượt là ảnh đối xứng của \(M\) qua \(B C\)\(A B\)), nên \(X T\)\(T Z\) thẳng hàng.
  2. Chứng minh hai góc ở hai tam giác bằng nhau
    • Góc \(\angle B A Z\) (trong \(\triangle B A Z\))
      Xét tam giác đều \(A B C\). Vì \(A B C\) đều, \(\angle C A B = 60^{\circ}\). Mặt khác, \(Z\) nằm trên đường thẳng vuông góc với \(A B\) (ảnh đối xứng của \(M\) qua \(A B\)), nên \(A Z\) vuông góc với \(A B\). Vậy
      \(\angle B A Z \textrm{ }\textrm{ } = \textrm{ }\textrm{ } 90^{\circ} - \angle C A B = 90^{\circ} - 60^{\circ} = 30^{\circ} .\)
    • Góc \(\angle A B H\) (trong \(\triangle A B H\))
      \(A H \bot B C\)\(A B C\) đều nên \(\angle A B C = 60^{\circ}\). Từ đó,
      \(\angle A B H = 90^{\circ} - \angle H B O \left(\right. \backslash\text{HBO} \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{g} \overset{ˊ}{\text{o}} \text{c}\&\text{nbsp};\text{nh}ọ\text{n}\&\text{nbsp};\text{trong}\&\text{nbsp}; \triangle A B H \left.\right) .\)
      Nhưng cụ thể hơn:
      • \(A H \bot B C \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \angle A H B = 90^{\circ} .\)
      • Trong tam giác \(A B C\) đều, \(\angle A B C = 60^{\circ}\). Vì \(H\) thuộc \(B C\), điểm thẳng hàng với \(B\), nên \(\angle A B H\) là góc kề bù của \(\angle A B C\) trong tam giác \(A B H\). Do đó
        \(\angle A B H = 180^{\circ} - \angle A B C - \angle A H B = 180^{\circ} - 60^{\circ} - 90^{\circ} = 30^{\circ} .\)
    • Do vậy,
      \(\angle B A Z \textrm{ }\textrm{ } = \textrm{ }\textrm{ } 30^{\circ} \text{v} \overset{ˋ}{\text{a}} \angle A B H = 30^{\circ} \Longrightarrow \angle B A Z = \angle A B H .\)
    • Góc \(\angle B Z A\) (trong \(\triangle B A Z\))
      Như đã nêu, \(A B \bot M Z\) nên \(B Z A\) là góc vuông:
      \(\angle B Z A = 90^{\circ} .\)
    • Góc \(\angle A H T\)
      • Chúng ta đã thấy \(A H \parallel M X\). Vì \(T\) là trung điểm \(X Z\), nên \(M T \parallel A Z\) (với \(A Z \bot A B\)). Khi tầm quan sát theo hình vẽ, ta có “\(A H\) vuông góc với \(B C\)” và “\(M X\) vuông góc với \(B C\)”, nên \(A H \parallel M X\).
      • Đồng thời, \(Z\) nằm trên đường vuông góc từ \(M\) tới \(A B\), tức \(M Z \bot A B\). Và \(T\) nằm trên \(X Z\), nên suy ra \(T Z \bot A B\). Do đó \(T Z \parallel M Z\).
      • Tóm lại, \(A H \bot B C\)\(M X \bot B C\) \(\textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } A H \parallel M X\). Còn \(A Z \bot A B\)\(M Z \bot A B\) \(\textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } A Z \parallel M Z\). Kết hợp lại, tam giác \(A H T\) vuông góc tại \(H\).
      • Khi đó, trong \(\triangle A B H\), \(\angle A H T\) là góc tại \(H\) tạo bởi \(A H\)\(H T\). Mà \(A H\) vuông góc với \(B C\), đồng thời \(H T\) song song với \(A Z\) (vì \(T\) trung điểm \(X Z\)\(Z \in \left(\right. M Z \left.\right)\)
15 tháng 4

câu hỏi đâu bạn

15 tháng 4

câu hỏi viết ở trênđó đấy đấy ạ

$+$ Trong cuộc sống hằng ngày, em thường xuyên sử dụng câu trần thuật và câu cảm thán. Bởi lẽ, hai l cho người nói truyền đạt thông tin một cách nhanh chóng mà không bị giới hạn về nội dung. Hơn n gần gũi giữa người với người, khiến cho mối quan hệ trở nên thân thiết hơn.

$+$ Trong cuộc sống thường xuyên sử dụng câu trần thuật và câu cảm thán. Bởi lẽ, hai loại câu này có thể giúp cho ngư tin một cách nhanh chóng mà không bị giới hạn về nội dung. Hơn nữa, nó còn tạo nên sự gần gũi g khiến cho mối quan hệ trở nên thân thiết hơn.

Trl:

Câu 1

trong cuộc sống hằng ngày , em thường sử dụng các kiểu câu trần thuật để kể lại sự việc, câu nghi vấn để hỏi thông tin, và câu cầu khiến để nhờ vả hay yêu cầu ai đó làm gì. Em dùng những kiểu câu này vì chúng giúp em giao tiếp dễ dàng và hiệu quả hơn với mọi người

Câu 2

Khi viết văn, chúng ta cần lưu ý sử dụng các kiểu câu sao cho phù hợp với nội dung và mục đích diễn ddath. Việc thay đổi kiểu câu hợp lý sẽ giúp bài văn hay hơn, sinh động và dễ gây ấn tượng với người đọc.

15 tháng 4

SO₃ là công thức hóa học của lưu huỳnh trioxit (sulfur trioxide), một hợp chất vô cơ rất quan trọng trong hóa học.


Thông tin cơ bản về SO₃:

  • Tên: Lưu huỳnh trioxit
  • Công thức: SO₃
  • Cấu tạo: Gồm 1 nguyên tử lưu huỳnh (S) liên kết với 3 nguyên tử oxy (O)
  • Trạng thái: Là một chất lỏng hoặc rắn không màu ở điều kiện thường, nhưng dễ bay hơi → tạo khói trắng trong không khí ẩm do phản ứng với hơi nước

🔥 Tính chất hóa học:

  • SO₃ là oxit axit mạnh, khi tác dụng với nước tạo thành axit sunfuric (H₂SO₄):
    \(\text{SO}_{3} + \text{H}_{2} \text{O} \rightarrow \text{H}_{2} \text{SO}_{4}\)
  • Phản ứng này rất mãnh liệt và tỏa nhiệt.

🏭 Ứng dụng:

  • SO₃ là chất trung gian quan trọng trong sản xuất axit sunfuric – một trong những hóa chất công nghiệp quan trọng nhất.

⚠️ Lưu ý an toàn:

  • SO₃ rất độc và ăn mòn mạnh.
  • Khi hít phải có thể gây tổn thương phổi vì nó tạo thành H₂SO₄ trong đường hô hấp.

p là số nguyên tố lớn hơn 3

=>p là số lẻ và p không chia hết cho 3

p không chia hết cho 3 nên p=3k+1 hoặc p=3k+2

TH1: p=3k+1

\(25-p^2=25-\left(3k+1\right)^2\)

\(=\left(4-3k-1\right)\left(4+3k+1\right)\)

\(=\left(-3k+3\right)\left(3k+5\right)=-3\left(k-1\right)\left(3k+5\right)⋮3\)(1)

TH2: p=3k+2

\(25-p^2=25-\left(3k+2\right)^2\)

\(=\left(5-3k-2\right)\left(5+3k+2\right)=\left(-3k+3\right)\left(3k+7\right)\)

\(=-3\left(k+1\right)\left(3k+7\right)⋮3\)(2)

Từ (1),(2) suy ra \(25-p^2⋮3\)

p là số lẻ nên p=2k+1

\(25-p^2=25-\left(2k+1\right)^2\)

\(=\left(5-2k-1\right)\left(5+2k+1\right)\)

\(=\left(-2k+4\right)\left(2k+6\right)\)

\(=-4\left(k-2\right)\left(k+3\right)\)

Vì k-2;k+3 có khoảng cách là 5 đơn vị nên (k-2)(k+3)\(⋮\)2

=>\(-4\left(k-2\right)\left(k+3\right)⋮4\cdot2=8\)

=>\(25-p^2⋮8\)

mà \(25-p^2⋮3\)

và ƯCLN(3;8)=1

nên \(25-p^2⋮\left(8\cdot3\right)\)

=>\(25-p^2⋮24\)

22 tháng 5

Truyện ngắn Áo Tết của Nguyễn Ngọc Tư là một tác phẩm giàu tính nhân văn, thể hiện sự đồng cảm sâu sắc với những con người nghèo khổ, đặc biệt là trẻ em. Câu chuyện kể về ước mơ nhỏ bé của một đứa trẻ muốn có chiếc áo mới trong dịp Tết, qua đó làm nổi bật tình cảm gia đình, sự hi sinh của người lớn dành cho con trẻ, và những niềm vui giản dị giữa cuộc sống khó khăn. Văn phong nhẹ nhàng, cảm xúc nhưng sâu sắc của Nguyễn Ngọc Tư giúp người đọc cảm nhận được sự chân thành và yêu thương lặng lẽ. Truyện khiến ta thêm trân trọng những gì mình đang có và khơi dậy sự sẻ chia với những mảnh đời thiếu thốn.

14 tháng 4

Cuộc khai thác thuộc địa lần thứ nhất của thực dân Pháp (1897–1914) đã có những tác động sâu sắc đến xã hội Việt Nam trên nhiều phương diện, từ kinh tế, chính trị đến đời sống xã hội như sau:

1. Tác động về kinh tế

- Phát triển kinh tế thuộc địa: Thực dân Pháp tập trung khai thác tài nguyên thiên nhiên, đặc biệt là than đá, khoáng sản và cao su. Các ngành công nghiệp khai thác và giao thông vận tải (như đường sắt, cảng biển) được xây dựng để phục vụ lợi ích của chính quốc.

- Hình thành nền kinh tế hàng hóa: Nền kinh tế tự nhiên, tự cung tự cấp của Việt Nam bị phá vỡ, thay vào đó là kinh tế hàng hóa phục vụ nhu cầu xuất khẩu. Nông nghiệp, đặc biệt là lúa gạo, cũng được định hướng sản xuất để xuất khẩu sang thị trường Pháp.

- Đầu tư mang tính bóc lột: Mặc dù cơ sở hạ tầng được cải thiện, nhưng chúng chủ yếu phục vụ khai thác tài nguyên và bóc lột kinh tế, không mang lại lợi ích cho người dân Việt Nam.

2. Tác động về xã hội

- Các giai cấp cũ trong xã hội có sự phân hóa: giai cấp địa chủ tuy mất vai trò giai cấp thống trị, nhưng số lượng ngày càng đông thêm. Một bộ phận địa chủ trở thành tay sai cho thực dân Pháp; giai cấp nông dân ngày càng bị bần cùng hoá, lâm vào cảnh nghèo khó, không lối thoát.

- Xuất hiện các lực lượng xã hội mới, như:

+ Giai cấp nông dân: có số lượng đông đảo, bị áp bức bóc lột nặng nề. Họ sẵn sàng hưởng ứng, tham gia cuộc đấu tranh giành độc lập dân tộc.

+ Tầng lớp tư sản: có nguồn gốc từ các nhà thầu khoán, chủ xí nghiệp, xưởng thủ công, chủ hãng buôn,... bị kìm hãm, chèn ép, chưa có tinh thần cách mạng.

+ Tiểu tư sản thành thị: bao gồm chủ các xưởng thủ công nhỏ, viên chức cấp thấp và những người làm nghề tự do. Đó là những người có trình độ học vấn, nhạy bén với thời cuộc nên đã sớm giác ngộ và tích cực tham gia vào cuộc vận động cứu nước đầu thế kỉ XX.

+ Công nhân: xuất thân từ nông dân, làm việc trong các đồn điền, hầm mỏ, nhà máy, xí nghiệp,… đời sống khổ cực, có tinh thần đấu tranh mạnh mẽ chống giới chủ nhằm cải thiện đời sống.

3. Tác động về chính trị

- Gia tăng sự bất bình trong xã hội: Chính sách bóc lột kinh tế và đàn áp chính trị của Pháp làm gia tăng mâu thuẫn xã hội. Đời sống người dân ngày càng khổ cực, dẫn đến sự bất mãn và các cuộc nổi dậy chống Pháp.

- Sự phát triển của phong trào yêu nước:

+ Các tầng lớp trí thức mới, như Phan Bội Châu, Phan Châu Trinh, xuất hiện và khởi xướng các phong trào đấu tranh đòi độc lập, tự do.

+ Những phong trào này thể hiện rõ sự chuyển biến về nhận thức, từ các cuộc đấu tranh theo mô hình phong kiến sang các hình thức đấu tranh mới, mang tư tưởng hiện đại hơn.

4. Tác động về văn hóa

- Văn hóa phương Tây (lối sống, trình độ học thức và tư duy…) du nhập vào Việt Nam

- Trong xã hội vẫn tồn tại nhiều hủ tục, tệ nạn (ma túy, mại dâm, mê tín dị đoan,…)

Tóm lại, cuộc khai thác thuộc địa lần thứ nhất của thực dân Pháp đã làm thay đổi sâu sắc xã hội Việt Nam, từ kinh tế đến văn hóa và tư tưởng. Dù mang yếu tố hiện đại hóa, nhưng phần lớn phục vụ cho lợi ích của thực dân, khiến người dân chịu cảnh bóc lột nặng nề. Tuy vậy, những tác động này cũng khơi dậy mâu thuẫn xã hội và ý thức đấu tranh, đặt nền móng cho các phong trào yêu nước sau này.

14 tháng 4
Tham khảoTác động của cuộc khai thác thuộc địa lần thứ nhất đến xã hội Việt Nam1. Tầng lớp xã hội bị phân hóa sâu sắc

Địa chủ phong kiến:

Một bộ phận cấu kết với Pháp, giàu lên nhờ bóc lột nông dân và hợp tác với chính quyền thực dân.

Hình thành địa chủ mới, tay sai cho Pháp.

Nông dân:

Bị bóc lột nặng nề hơn (thuế, lao dịch, mất đất vào tay đồn điền).

Đời sống khốn khổ, mâu thuẫn với Pháp và địa chủ ngày càng gay gắt.

Tư sản Việt Nam:

Xuất hiện manh nha, chủ yếu là tiểu thương, thợ thủ công.

Nhưng bị kìm hãm phát triển do Pháp độc quyền kinh tế.

Tiểu tư sản:

Bao gồm học sinh, trí thức, viên chức, nhà báo.

Bị ảnh hưởng bởi tư tưởng dân chủ tư sản, dần có ý thức chính trị.

Giai cấp công nhân:

Mới hình thành, làm trong hầm mỏ, đồn điền, xí nghiệp của Pháp.

Bị bóc lột nặng nề → Hạt nhân cách mạng sau này.

2. Tác động chung

Xã hội Việt Nam chuyển biến từ phong kiến sang xã hội có yếu tố tư bản chủ nghĩa.

Mâu thuẫn dân tộc (toàn dân với Pháp)giai cấp (nông dân với địa chủ, tư sản với Pháp) ngày càng gay gắt.

Đặt cơ sở xã hội cho các phong trào yêu nước và cách mạng đầu thế kỷ XX (như Đông Du, Duy Tân...).