K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!


đúng vậy ạ

8 tháng 4

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!


8 tháng 4

1. is

2.studies

3.will

4.plays

5.are

8 tháng 4

*Trả lời:
- My brother is going to the park now.
- She studies English every day.
- We will visit our grandparents next week.
- He plays football after school.
- They are doing their homework at the moment.

22 tháng 5

Nguyễn Trung Đông thân mến,

Bạn hỏi về bài toán: "Tìm số nguyên tố p sao cho số \(p^{2} + 23\) có đúng 6 ước nguyên dương."

Để giải bài này, ta cần hiểu cách tính số ước nguyên dương của một số tự nhiên.

Bước 1: Tính số ước nguyên dương của một số

  • Nếu một số \(n\) được phân tích thành thừa số nguyên tố dưới dạng:
    \(n = p_{1}^{m_{1}} \times p_{2}^{m_{2}} \times \hdots \times p_{k}^{m_{k}}\)
    thì số ước nguyên dương của \(n\) là:
    \(\left(\right. m_{1} + 1 \left.\right) \left(\right. m_{2} + 1 \left.\right) \hdots \left(\right. m_{k} + 1 \left.\right)\)

Bước 2: Áp dụng cho bài toán

  • Ta cần tìm số nguyên tố \(p\) sao cho \(p^{2} + 23\) có đúng 6 ước nguyên dương.
  • Số 6 có thể phân tích thành tích các số nguyên dương như: \(6 = 6 \times 1\) hoặc \(6 = 3 \times 2\).
  • Điều này có nghĩa \(p^{2} + 23\) có thể là:
    • Lũy thừa bậc 5 của một số nguyên tố (vì số ước là 6 nếu số đó có dạng \(q^{5}\)).
    • Hoặc tích của hai số nguyên tố với số mũ sao cho tích số ước là 6, ví dụ \(\left(\right. 2 + 1 \left.\right) \left(\right. 1 + 1 \left.\right) = 3 \times 2 = 6\), tức là \(p^{2} + 23 = a^{2} \times b\) với \(a , b\) là số nguyên tố khác nhau.

Bước 3: Thử các giá trị nguyên tố \(p\) nhỏ

  • Thử \(p = 2\):
    \(p^{2} + 23 = 4 + 23 = 27 = 3^{3}\)
    Số ước của 27 là \(3 + 1 = 4\), không phải 6.
  • Thử \(p = 3\):
    \(9 + 23 = 32 = 2^{5}\)
    Số ước của 32 là \(5 + 1 = 6\) — thỏa mãn điều kiện.
  • Thử \(p = 5\):
    \(25 + 23 = 48 = 2^{4} \times 3\)
    Số ước của 48 là \(\left(\right. 4 + 1 \left.\right) \left(\right. 1 + 1 \left.\right) = 5 \times 2 = 10\), không phải 6.
  • Thử \(p = 7\):
    \(49 + 23 = 72 = 2^{3} \times 3^{2}\)
    Số ước là \(\left(\right. 3 + 1 \left.\right) \left(\right. 2 + 1 \left.\right) = 4 \times 3 = 12\), không phải 6.
  • Thử \(p = 11\):
    \(121 + 23 = 144 = 2^{4} \times 3^{2}\)
    Số ước là \(\left(\right. 4 + 1 \left.\right) \left(\right. 2 + 1 \left.\right) = 5 \times 3 = 15\), không phải 6.

Kết luận:

Chỉ có \(p = 3\) thỏa mãn điều kiện để \(p^{2} + 23\) có đúng 6 ước nguyên dương, vì:

\(3^{2} + 23 = 32 = 2^{5}\)

và số ước của 32 là 6.

Nếu bạn muốn tôi giải thích thêm về cách tính số ước hoặc các bước thử khác, hãy hỏi nhé!

8 tháng 4

hihi hihi hihi

8 tháng 4

Tem thư

8 tháng 4

mình mới học lớp sáu làm sao hiểu đc

8 tháng 4

Hôn trả

đính hôn