Hãy viết một đoạn chương trình có độ phức tạp thời gian là tuyến tính.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Tại điểm \(x=x_0\) bất kì, ta có:
\(f'\left(x_0\right)=\lim\limits_{x\rightarrow x_0}\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}=\lim\limits_{x\rightarrow x_0}\dfrac{-6x^2+9x-2-\left(-6x_0^2+9x_0-2\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{-6x^2+6x_0^2+9x-9x_0}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{-6.\left(x^2-x_0^2\right)+9\left(x-x_0\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{-6\left(x-x_0\right)\left(x+x_0\right)+9\left(x-x_0\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\dfrac{\left(x-x_0\right)\left[-6\left(x+x_0\right)+9\right]}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x_0}\left[-6\left(x+x_0\right)+9\right]\)
\(=-6.\left(x_0+x_0\right)+9\)
\(=-12x_0+9\)
Vậy \(f'\left(x\right)=-12x+9\)
Gọi \(\Delta x,\Delta y\) lần lượt là số gia của biến \(x\) và \(y\) .
Đặt \(x=x_0\in R\). Khi đó \(f\left(x_0+\Delta x\right)=-6\left(x_0+\Delta x\right)^2+9\left(x_0+\Delta x\right)-2\)
\(=-6x_0^2+9x_0-2-6\left(\Delta x_0\right)^2-12x_0\Delta x+9\Delta x\)
\(\rArr\Delta y=f\left(x_0+\Delta x\right)-f\left(x_0\right)\)
\(=-6\left(\Delta x\right)^2-12x_0\Delta x+9\Delta x\)
Ta có \(f^{\prime}\left(x_0\right)=\lim_{\Delta x\rarr0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\rarr0}\left(\frac{-6\left(\Delta x\right)^2-12x_0\Delta x+9\Delta x}{\Delta x}\right)\)
\(=\lim_{\Delta x\rarr0}\left(-6\Delta x-12x_0+9\right)\)
\(=-12x_0+9\)
Như vậy \(f^{\prime}\left(x\right)=-12x+9\)


Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Điện năng mà quạt tiêu thụ trong 4h là:
A=P.t=75.4.3600=1080000(J)A=P.t=75.4.3600=1080000(J)
Vì hiệu suất của quạt là 80% nên chỉ 80% điện năng biến đổi thành là có ích. Vậy cơ năng của quạt là:
Q=A.0,8=1080000.0,8=864000(J)