K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 3

Gọi H là hình chiếu vuông góc của O lên d

\(\Rightarrow AA_1||OH||BB_1\)

Áp dụng định lý Thales trong tam giác \(ABA_1\)

\(\dfrac{OH}{AA_1}=\dfrac{BH}{AB}\)

Áp dụng định lý Thales trong tam giác \(ABB_1\)

\(\dfrac{OH}{BB1}=\dfrac{AH}{AB}\)

\(\Rightarrow\dfrac{OH}{AA_1}+\dfrac{OH}{BB_1}=\dfrac{BH}{AB}+\dfrac{AH}{AB}\)

\(\Rightarrow OH.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=1\)

\(\Rightarrow OH=\dfrac{a.b}{a+b}\)

Do a, b không đổi \(\Rightarrow OH\) không đổi

Hay khoảng cách từ O đến d không đổi khi A, B chạy trên d

NV
26 tháng 3

loading...

22 tháng 5

Giải chi tiết:

Bước 1: Xác định phương trình đường thẳng CD
Giả sử:

  • Tọa độ của điểm A và B thay đổi, nhưng luôn thỏa mãn điều kiện bài toán.
  • Điểm C và D được xác định dựa trên A và B qua một quy tắc cụ thể (ví dụ: trung điểm, hình chiếu, giao điểm đường phân giác...).
  • Gọi phương trình đường thẳng CD có dạng:
    \(a x + b y + c = 0 (\text{ph}ụ\&\text{nbsp};\text{thu}ộ\text{c}\&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \text{o}\&\text{nbsp};\text{t}ọ\text{a}\&\text{nbsp};độ\&\text{nbsp};\text{A},\&\text{nbsp};\text{B})\)

Bước 2: Tìm điểm cố định mà CD luôn đi qua

  • Giả định tồn tại điểm cố định \(M \left(\right. x_{0} , y_{0} \left.\right)\) sao cho CD luôn đi qua \(M\) với mọi vị trí của A và B (\(A \neq B\)).
  • Thay \(M \left(\right. x_{0} , y_{0} \left.\right)\) vào phương trình CD:
    \(a \left(\right. x_{0} , y_{0} , A , B \left.\right) \cdot x_{0} + b \left(\right. x_{0} , y_{0} , A , B \left.\right) \cdot y_{0} + c \left(\right. x_{0} , y_{0} , A , B \left.\right) = 0 \forall A , B\)
  • Phân tích phương trình:
    Biến đổi phương trình về dạng đa thức theo tham số liên quan đến A và B. Để phương trình đúng với mọi A, B, hệ số của các hạng tử chứa tham số phải bằng 0.

Bước 3: Giải hệ phương trình

  • Ví dụ: Nếu phương trình có dạng:
    \(\left(\right. m + 1 \left.\right) x_{0} - \left(\right. 2 m - 3 \left.\right) y_{0} + 5 = 0 \forall m\)
    • Tách hệ số của \(m\):
      \(m \left(\right. x_{0} - 2 y_{0} \left.\right) + \left(\right. x_{0} + 3 y_{0} + 5 \left.\right) = 0 \forall m\)
    • Đồng nhất hệ số:
      \(\left{\right. x_{0} - 2 y_{0} = 0 \\ x_{0} + 3 y_{0} + 5 = 0\)
    • Giải hệ:
      \(x_{0} = 2 y_{0} 2 y_{0} + 3 y_{0} + 5 = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } y_{0} = - 1 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x_{0} = - 2\)
    • Kết luận: Điểm cố định là \(M \left(\right. - 2 , - 1 \left.\right)\).

Bước 4: Kiểm tra lại

  • Thay \(M \left(\right. x_{0} , y_{0} \left.\right)\) vào phương trình CD với các vị trí khác nhau của A, B để xác nhận tính đúng đắn.

Ví dụ minh họa:
Cho tam giác ABC cố định. Trên AB lấy điểm D di động, trên AC lấy điểm E di động sao cho \(A D = C E\). Chứng minh DE luôn đi qua một điểm cố định.

Giải:

  • Bước 1: Chọn hệ trục tọa độ, giả sử \(A \left(\right. 0 , 0 \left.\right)\)\(B \left(\right. 1 , 0 \left.\right)\)\(C \left(\right. 0 , 1 \left.\right)\).
  • Bước 2: Gọi \(D \left(\right. t , 0 \left.\right)\) trên AB và \(E \left(\right. 0 , t \left.\right)\) trên AC (vì \(A D = C E = t\)).
  • Bước 3: Phương trình DE:
    \(\frac{x - t}{- t} = \frac{y}{t - 0} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x + y = t\)
  • Bước 4: Phương trình \(x + y = t\) phụ thuộc vào \(t\). Để DE đi qua điểm cố định \(M \left(\right. x_{0} , y_{0} \left.\right)\):
    \(x_{0} + y_{0} = t \forall t \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x_{0} + y_{0} = 0\)
    Chọn \(M \left(\right. 1 , - 1 \left.\right)\) (nằm trên đường thẳng \(x + y = 0\)).

Kết luận: DE luôn đi qua điểm cố định \(M \left(\right. 1 , - 1 \left.\right)\).


Đáp án:
Đường thẳng CD luôn đi qua điểm cố định \(M \left(\right. x_{0} , y_{0} \left.\right)\) được xác định bằng cách giải hệ phương trình từ phương trình tổng quát của CD145.

22 tháng 5



Giải chi tiết:

Bước 1: Xác định vị trí các điểm P, I, K, Q
Giả thiết:

  • P là trung điểm của AB.
  • Q là trung điểm của AC.
  • I và K lần lượt là trung điểm của BC và CA.

Bước 2: Tính chất hình học

  • Đường trung bình PQ của tam giác ABC song song với BC và có độ dài bằng \(\frac{1}{2} B C\).
  • Tứ giác PIKQ là hình bình hành (do PQ // IK và PI // QK).

Bước 3: Tính diện tích PIKQ

  • Diện tích hình bình hành PIKQ = \(\frac{1}{2} \times \text{Di}ệ\text{n}\&\text{nbsp};\text{t} \overset{ˊ}{\imath} \text{ch}\&\text{nbsp};\text{tam}\&\text{nbsp};\text{gi} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{ABC}\).
  • Giả sử tam giác ABC có diện tích \(S_{A B C}\), khi đó:
    \(S_{P I K Q} = \frac{1}{2} S_{A B C}\)

Ví dụ minh họa:
Cho tam giác ABC có diện tích \(20 \textrm{ } \text{cm}^{2}\).

  • Diện tích tứ giác PIKQ là:
    \(S_{P I K Q} = \frac{1}{2} \times 20 = 10 \textrm{ } \text{cm}^{2}\)

Kết luận:
Diện tích tứ giác PIKQ bằng một nửa diện tích tam giác ABC nếu các điểm P, I, K, Q là trung điểm của các cạnh134.

Công thức tổng quát:

\(S_{P I K Q} = \frac{1}{2} S_{A B C}\)

Đáp án:
Diện tích tứ giác PIKQ là \(\boxed{\frac{1}{2} S_{A B C}}\).

22 tháng 5



Giải chi tiết:

Bước 1: Xác định vị trí các điểm P, I, K, Q
Giả thiết:

  • P là trung điểm của AB.
  • Q là trung điểm của AC.
  • I và K lần lượt là trung điểm của BC và CA.

Bước 2: Tính chất hình học

  • Đường trung bình PQ của tam giác ABC song song với BC và có độ dài bằng \(\frac{1}{2} B C\).
  • Tứ giác PIKQ là hình bình hành (do PQ // IK và PI // QK).

Bước 3: Tính diện tích PIKQ

  • Diện tích hình bình hành PIKQ = \(\frac{1}{2} \times \text{Di}ệ\text{n}\&\text{nbsp};\text{t} \overset{ˊ}{\imath} \text{ch}\&\text{nbsp};\text{tam}\&\text{nbsp};\text{gi} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{ABC}\).
  • Giả sử tam giác ABC có diện tích \(S_{A B C}\), khi đó:
    \(S_{P I K Q} = \frac{1}{2} S_{A B C}\)

Ví dụ minh họa:
Cho tam giác ABC có diện tích \(20 \textrm{ } \text{cm}^{2}\).

  • Diện tích tứ giác PIKQ là:
    \(S_{P I K Q} = \frac{1}{2} \times 20 = 10 \textrm{ } \text{cm}^{2}\)

Kết luận:
Diện tích tứ giác PIKQ bằng một nửa diện tích tam giác ABC nếu các điểm P, I, K, Q là trung điểm của các cạnh134.

Công thức tổng quát:

\(S_{P I K Q} = \frac{1}{2} S_{A B C}\)

Đáp án:
Diện tích tứ giác PIKQ là \(\boxed{\frac{1}{2} S_{A B C}}\).

25 tháng 3

\(a=\frac72\) ​,b=3

f(2)=0

=>\(2^2+a\cdot2+b=0\)

=>2a+b=-4

=>b=-4-2a

=>\(f\left(x\right)=x^2+ax-2a-4\)

f(x) chia hết cho 2x-3

=>\(x^2+ax-2a-4⋮2x-3\)

=>\(x^2-1,5x+\left(a+1,5\right)x-\left(1,5a+2,25\right)+1,5a+2,25-2a-4⋮2x-3\)

=>-0,5a-1,75=0

=>0,5a=-1,75

=>a=-3,5

b=-4-2a=-4+7=3

25 tháng 3

They burned a mark on the cattle so show who they belonged to

26 tháng 3

They burned a mark on the cattle to show who they belonged

25 tháng 3

Vai trò của mô đun cảm biến: giúp người dùng dễ dàng kết nối và sử dụng cảm biến trong các mạch điện điều khiển.

Các loại cảm biến thông minh phổ biến hiện nay
  • Cảm biến chuyển động thông minh. Cảm biến chuyển động thông minh. ...
  • Cảm biến nhiệt độ, độ ẩm thông minh. Cảm biến nhiệt độ, độ ẩm. ...
  • Cảm biến khói thông minh. Cảm biến khói thông minh. ...
  • Cảm biến cửa thông minh. Cảm biến cửa thông minh. ...
  • Cảm biến bụi mịn thông minh.
25 tháng 3

Quá trình thiết kế kĩ thuật gồm các bước sau:

  1. - Xác định vấn đề, xây dựng tiêu chí
  2. - Tìm hiểu tổng quan, đề xuất giải pháp.
  3. - Xây dựng nguyên mẫu.
  4. - Thử nghiệm, đánh giá
  5. - Lập hồ sơ kĩ thuật.
  6. Thiết kế
25 tháng 3

written

22 tháng 5

(chuyên môn) hiệu quả

Các bước cụ thể:

Bước 1: Đọc kỹ và xác định yêu cầu đề bài

  • Xác định rõ đề yêu cầu phân tích tác phẩm nào, khía cạnh gì (nhân vật, chủ đề, nghệ thuật, ý nghĩa...).

Bước 2: Đọc và tìm hiểu tác phẩm

  • Đọc kỹ tác phẩm, chú ý các chi tiết quan trọng, nghệ thuật đặc sắc, thông điệp chính.

Bước 3: Lập dàn ý chi tiết

  • Mở bài: Giới thiệu tác phẩm, tác giả, nêu vấn đề cần phân tích.
  • Thân bài:
    • Khái quát nội dung chính của tác phẩm.
    • Phân tích các khía cạnh theo yêu cầu đề bài (nội dung, nghệ thuật, ý nghĩa...).
    • Dẫn chứng cụ thể từ tác phẩm (trích dẫn, phân tích chi tiết).
    • Nhận xét, đánh giá, liên hệ thực tế (nếu có).
  • Kết bài: Khẳng định lại giá trị tác phẩm, ý nghĩa vấn đề phân tích, cảm nhận cá nhân.

Bước 4: Viết bài hoàn chỉnh

  • Viết thành bài văn hoàn chỉnh theo dàn ý, đảm bảo mạch lạc, logic, có dẫn chứng cụ thể.

Bước 5: Đọc lại, chỉnh sửa

  • Kiểm tra lỗi chính tả, ngữ pháp, bổ sung ý còn thiếu, chỉnh lại câu văn cho mạch lạc.


24 tháng 3

tham khảo đc ko