Vẽ sơ đồ của biệt ngữ xã hội:chức năng và giá trị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Bài 5:
a: \(D=\dfrac{6x}{4x^2-9}-\dfrac{x}{3-2x}+\dfrac{x}{2x+3}-1\)
\(=\dfrac{6x}{\left(2x-3\right)\left(2x+3\right)}+\dfrac{x}{2x-3}+\dfrac{x}{2x+3}-1\)
\(=\dfrac{6x+x\left(2x+3\right)+x\left(2x-3\right)-4x^2+9}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{6x+x\left(2x+3+2x-3\right)-4x^2+9}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{6x+9}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{3}{2x-3}\)
b: \(D=-\dfrac{1}{2}\)
=>\(\dfrac{3}{2x-3}=-\dfrac{1}{2}\)
=>2x-3=-6
=>2x=-3
=>\(x=-\dfrac{3}{2}\left(loại\right)\)
c: Để D nguyên thì \(3⋮2x-3\)
=>\(2x-3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;1;3;0\right\}\)
Bài 6:
a: \(P=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}+\dfrac{2x+4}{4-x^2}\right)\cdot\left(1+\dfrac{5}{x-3}\right)\)
\(=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\right)\cdot\dfrac{x-3+5}{x-3}\)
\(=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}-\dfrac{2}{x-2}\right)\cdot\dfrac{x+2}{x-3}\)
\(=\left(\dfrac{x-2}{x+2}+1\right)\cdot\dfrac{x+2}{x-3}=\dfrac{x-2+x+2}{x+2}\cdot\dfrac{x+2}{x-3}=\dfrac{2x}{x-3}\)
b: Khi x=-1 thì \(P=\dfrac{2\cdot\left(-1\right)}{-1-3}=\dfrac{-2}{-4}=\dfrac{1}{2}\)
c: \(P=\dfrac{2}{3}\)
=>\(\dfrac{2x}{x-3}=\dfrac{2}{3}\)
=>\(\dfrac{x}{x-3}=\dfrac{1}{3}\)
=>3x=x-3
=>2x=-3
=>\(x=-\dfrac{3}{2}\)(nhận)
d: Để P là số tự nhiên thì \(\left\{{}\begin{matrix}2x⋮x-3\\\dfrac{2x}{x-3}>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-6+6⋮x-3\\\dfrac{x}{x-3}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6⋮x-3\\\left[{}\begin{matrix}x>3\\x< =0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\\\left[{}\begin{matrix}x>3\\x< =0\end{matrix}\right.\end{matrix}\right.\)
=>\(x\in\left\{4;5;6;0;9;-3\right\}\)


Chắc em ghi đề sai
Nếu \(a+b+c=1\) thì \(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{9}{10}\)
Còn \(a+b+c=3\) thì \(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{3}{2}\)
Chứng minh BĐT dưới quá đơn giản chỉ bằng 1 dòng AM-Gm cho mẫu.
Còn BĐT trên thì sử dụng đánh giá (thông qua kĩ thuật UCT):
\(\dfrac{x}{1+x^2}\le\dfrac{36x+3}{50}\)
Nhân chéo quy đồng thì BĐT này tương đương:
\(\left(3x-1\right)^2\left(4x+3\right)\ge0\) (luôn đúng với x dương)
Áp dụng cho a;b;c rồi cộng vế là xong

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
nên CEHD là tứ giác nội tiếp
Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp
Ta có: \(\widehat{FDH}=\widehat{FBH}\)(BFHD nội tiếp)
\(\widehat{EDH}=\widehat{ECH}\)(EHDC nội tiếp)
mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{BAC}\right)\)
nên \(\widehat{FDH}=\widehat{EDH}\)
=>DH là phân giác của góc FDE
Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF nội tiếp)
\(\widehat{DFH}=\widehat{DBH}\)(BFHD nội tiếp)
mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ACD}\right)\)
nên \(\widehat{EFH}=\widehat{DFH}\)
=>FH là phân giác của góc EFD
Xét ΔEFD có
DH,FH là các đường phân giác
DH cắt FH tại H
Do đó: H là tâm đường tròn nội tiếp của ΔEFD
hay H cách đều ba cạnh của ΔEFD

a: Gọi I là giao điểm của AF và DM
Ta có: \(AE=EB=\dfrac{AB}{2}\)
\(DF=FC=\dfrac{DC}{2}\)
mà AB=DC(ABCD là hình vuông)
nên AE=EB=DF=FC
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
=>AF//CE
mà DM\(\perp\)CE
nên DM\(\perp\)AF tại I
Xét ΔDMC có
F là trung điểm của DC
FI//MC
Do đó: I là trung điểm của DM
XétΔADM có
AI là đường cao
AI là đường trung tuyến
Do đó: ΔADM cân tại A