K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

8 tháng 3

1 Trung quốc

2 Việt Nam

9 tháng 3

Nga

Bài 5:

a: \(D=\dfrac{6x}{4x^2-9}-\dfrac{x}{3-2x}+\dfrac{x}{2x+3}-1\)

\(=\dfrac{6x}{\left(2x-3\right)\left(2x+3\right)}+\dfrac{x}{2x-3}+\dfrac{x}{2x+3}-1\)

\(=\dfrac{6x+x\left(2x+3\right)+x\left(2x-3\right)-4x^2+9}{\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{6x+x\left(2x+3+2x-3\right)-4x^2+9}{\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{6x+9}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{3}{2x-3}\)

b: \(D=-\dfrac{1}{2}\)

=>\(\dfrac{3}{2x-3}=-\dfrac{1}{2}\)

=>2x-3=-6

=>2x=-3

=>\(x=-\dfrac{3}{2}\left(loại\right)\)

c: Để D nguyên thì \(3⋮2x-3\)

=>\(2x-3\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{2;1;3;0\right\}\)

Bài 6:

a: \(P=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}+\dfrac{2x+4}{4-x^2}\right)\cdot\left(1+\dfrac{5}{x-3}\right)\)

\(=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\right)\cdot\dfrac{x-3+5}{x-3}\)

\(=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}-\dfrac{2}{x-2}\right)\cdot\dfrac{x+2}{x-3}\)

\(=\left(\dfrac{x-2}{x+2}+1\right)\cdot\dfrac{x+2}{x-3}=\dfrac{x-2+x+2}{x+2}\cdot\dfrac{x+2}{x-3}=\dfrac{2x}{x-3}\)

b: Khi x=-1 thì \(P=\dfrac{2\cdot\left(-1\right)}{-1-3}=\dfrac{-2}{-4}=\dfrac{1}{2}\)

c: \(P=\dfrac{2}{3}\)

=>\(\dfrac{2x}{x-3}=\dfrac{2}{3}\)

=>\(\dfrac{x}{x-3}=\dfrac{1}{3}\)

=>3x=x-3

=>2x=-3

=>\(x=-\dfrac{3}{2}\)(nhận)

d: Để P là số tự nhiên thì \(\left\{{}\begin{matrix}2x⋮x-3\\\dfrac{2x}{x-3}>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-6+6⋮x-3\\\dfrac{x}{x-3}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6⋮x-3\\\left[{}\begin{matrix}x>3\\x< =0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\\\left[{}\begin{matrix}x>3\\x< =0\end{matrix}\right.\end{matrix}\right.\)

=>\(x\in\left\{4;5;6;0;9;-3\right\}\)

 

NV
5 tháng 3

Chắc em ghi đề sai

Nếu \(a+b+c=1\) thì \(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{9}{10}\)

Còn \(a+b+c=3\) thì \(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\le\dfrac{3}{2}\)

Chứng minh BĐT dưới quá đơn giản chỉ bằng 1 dòng AM-Gm cho mẫu.

Còn BĐT trên thì sử dụng đánh giá (thông qua kĩ thuật UCT):

\(\dfrac{x}{1+x^2}\le\dfrac{36x+3}{50}\)

Nhân chéo quy đồng thì BĐT này tương đương:

\(\left(3x-1\right)^2\left(4x+3\right)\ge0\) (luôn đúng với x dương)

Áp dụng cho a;b;c rồi cộng vế là xong

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp

Ta có: \(\widehat{FDH}=\widehat{FBH}\)(BFHD nội tiếp)

\(\widehat{EDH}=\widehat{ECH}\)(EHDC nội tiếp)

mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{BAC}\right)\)

nên \(\widehat{FDH}=\widehat{EDH}\)

=>DH là phân giác của góc FDE

Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF nội tiếp)

\(\widehat{DFH}=\widehat{DBH}\)(BFHD nội tiếp)

mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ACD}\right)\)

nên \(\widehat{EFH}=\widehat{DFH}\)

=>FH là phân giác của góc EFD

Xét ΔEFD có

DH,FH là các đường phân giác

DH cắt FH tại H

Do đó: H là tâm đường tròn nội tiếp của ΔEFD

hay H cách đều ba cạnh của ΔEFD

a: Gọi I là giao điểm của AF và DM

Ta có: \(AE=EB=\dfrac{AB}{2}\)

\(DF=FC=\dfrac{DC}{2}\)

mà AB=DC(ABCD là hình vuông)

nên AE=EB=DF=FC

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

=>AF//CE

mà DM\(\perp\)CE

nên DM\(\perp\)AF tại I

Xét ΔDMC có

F là trung điểm của DC

FI//MC

Do đó: I là trung điểm của DM

XétΔADM có

AI là đường cao

AI là đường trung tuyến

Do đó: ΔADM cân tại A