Câu 15. (1,0 điểm). Một người đi xe máy từ địa điểm A đến địa điểm B cách nhau $60$ km. Khi từ B trở về A, do trời mưa người đó giảm tốc độ $10$ km/h so với lúc đi nên thời gian về nhiều hơn thời gian đi là $30$ phút. Tính tốc độ lúc về của người đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) ĐKXĐ: x ≠ -5
Phương trình đã cho trở thành:
(x + 6).2 + 3.(x + 5) = 2.2(x + 5)
2x + 12 + 3x + 15 = 4x + 20
5x - 4x = 20 - 12 - 15
x = -7 (nhận)
Vậy S = {-7}
b) x + 3y = -2
x = -2 - 3y (1)
5x + 8y = 11 (2)
Thế (1) vào (2), ta được:
5(-2 - 3y) + 8y = 11
-10 - 15y + 8y = 11
-7y = 11 + 10
-7y = 21
y = 21 : (-7)
y = -3
Thế y = -3 vào (1), ta được:
x = -2 - 3.(-3) = 7
Vậy S = {(7; -3)}

a) Nhiệt độ t (⁰C) tuần tới tại Tokyo là:
t > -5
b) Gọi x (tuổi) là tuổi của người điều khiển xe máy điện. Ta có bất đẳng thức:
x ≥ 16
c) Gọi z (đồng) là mức lương tối thiểu trong một giờ làm việc của người lao động. Ta có bất đẳng thức:
z ≥ 20000
d) y là số dương nên ta có bất đẳng thức:
y > 0

`DE = DB . sinB = 10. sin70^o ~~ 9,4 (m) `
`=> AF ~~ 15 - 9,4~~ 5,6 (m) `
`ΔAFD` vuông tại `F `
`=> AD = sqrt{AF^2 + DF^2} = sqrt{AF^2 + EC^2} = sqrt{5,6^2 + 13^2} ~~14,15 (m)`
Vậy ....

Bài 1:
a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp đường tròn đường kính BC
=>B,F,E,C cùng thuộc một đường tròn
b: Xét (O) có
\(\widehat{CNM}\) là góc nội tiếp chắn cung CM
\(\widehat{CBM}\) là góc nội tiếp chắn cung CM
Do đó: \(\widehat{CNM}=\widehat{CBM}\)
mà \(\widehat{CBM}=\widehat{HFE}\)(BFEC nội tiếp)
nên \(\widehat{HFE}=\widehat{HNM}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên FE//MN
c: Gọi Ax là tiếp tuyến tại A của (O)
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{AEF}\left(=180^0-\widehat{FEC}\right)\)
nên \(\widehat{xAC}=\widehat{AEF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên EF//Ax
mà Ax\(\perp\)OA
nên OA\(\perp\)EF
d: Xét (O) có
ΔABK nội tiếp
AK là đường kính
Do đó: ΔABK vuông tại B
=>BA\(\perp\)BK
mà CH\(\perp\)BA
nên CH//BK
Xét (O) có
ΔACK nội tiếp
AK là đường kính
Do đó: ΔACK vuông tại C
=>CA\(\perp\)CK
mà BH\(\perp\)AC
nên BH//CK
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HK
=>H,I,K thẳng hàng
Xét ΔKAH có
I,O lần lượt là trung điểm của KH,KA
=>IO là đường trung bình của ΔKAH
=>AH=2IO
e: Xét (O) có
\(\widehat{MCA};\widehat{MBA}\) là góc nội tiếp chắn cung MA
Do đó: \(\widehat{MCA}=\widehat{MBA}\)
mà \(\widehat{MBA}=\widehat{ACN}\left(=90^0-\widehat{BAC}\right)\)
nên \(\widehat{MCA}=\widehat{NCA}\)
=>CA là phân giác của góc CMN
Xét ΔCHM có
CA là đường cao
CA là đường phân giác
Do đó: ΔCHM cân tại C
ΔCHM cân tại C
mà CA là đường cao
nên CA là đường trung trực của HM
=>H đối xứng M qua AC
Bài 2:
a: Xét (O) có
\(\widehat{BAE}\) là góc nội tiếp chắn cung BE
\(\widehat{CAE}\) là góc nội tiếp chắn cung CE
\(\widehat{BAE}=\widehat{CAE}\)(AE là phân giác của góc BAC)
Do đó: \(sđ\stackrel\frown{BE}=sđ\stackrel\frown{CE}\)
=>EB=EC
=>ΔEBC cân tại E
b: EG=EC
=>E là trung điểm của GC
Xét ΔGBC có
BE là đường trung tuyến
\(BE=\dfrac{GC}{2}\)
Do đó: ΔGBC vuông tại B
=>GB\(\perp\)BC tại B
=>GB là tiếp tuyến của đường tròn đường kính BC
c: Xét (O) có
\(\widehat{BAE};\widehat{BCE}\) là các nội tiếp cùng chắn cung BE
Do đó: \(\widehat{BAE}=\widehat{BCE}\)
Xét ΔDAB và ΔDCE có
\(\widehat{DAB}=\widehat{DCE}\)
\(\widehat{ADB}=\widehat{CDE}\)(hai góc đối đỉnh)
Do đó: ΔDAB~ΔDCE
=>\(\dfrac{DA}{DC}=\dfrac{DB}{DE}\)
=>\(DA\cdot DE=DB\cdot DC\)

a) Do MA ⊥ MB (gt)
⇒ ∠MAB = 90⁰
⇒ M, A, B thuộc đường tròn đường kính AB
Mà M, A, B thuộc (O)
⇒ O là trung điểm của AB
⇒ A, O, B thẳng hàng
b) Do I là điểm chính giữa của cung nhỏ MA (gt)
⇒ sđ cung AI = sđ cung MI
⇒ ∠ABI = ∠MBI (hai góc nội tiếp chắn hai cung bằng nhau)
⇒ BI là tia phân giác của ∠ABM
Do K là điểm chính giữa của cung MB (gt)
⇒ sđ cung BK = sđ cung MK
⇒ ∠BAK = ∠MAK (hai góc nội tiếp chắn hai cung bằng nhau)
⇒ AK là tia phân giác của ∠BAM
Mà P là giao điểm của AK và BI (gt)
⇒ P là giao điểm của ba đường phân giác của ∆MAB
⇒ P là tâm đường tròn nội tiếp ∆MAB
a.
Do \(OM=OA=R\Rightarrow\Delta OAM\) cân tại O
\(\Rightarrow\widehat{OAM}=\widehat{OMA}\Rightarrow\widehat{AOM}=180^0-\left(\widehat{OAM}+\widehat{OMA}\right)=180^0-2\widehat{OMA}\)
Tương tự, \(\Delta OBM\) cân tại O
\(\Rightarrow\widehat{BOM}=180^0-2\widehat{OMB}\)
\(\Rightarrow\widehat{AOM}+\widehat{BOM}=360^0-2\left(\widehat{OMA}+\widehat{OMB}\right)\)
\(\Rightarrow\widehat{AOM}+\widehat{BOM}=360^0-2.\widehat{AMB}=360^0-2.90^0=180^0\)
\(\Rightarrow A,O,B\) thẳng hàng
b.
Do I là điểm chính giữa cung MA \(\Rightarrow sđ\stackrel\frown{AI}=sđ\stackrel\frown{MI}\Rightarrow\widehat{ABI}=\widehat{MBI}\)
\(\Rightarrow BI\) là tia phân giác góc \(\widehat{ABM}\) (1)
Do K là điểm chính giữa cung MB \(\Rightarrow sđ\stackrel\frown{MK}=sđ\stackrel\frown{BK}\Rightarrow\widehat{MAK}=\widehat{BAK}\)
\(\Rightarrow AK\) là tia phân giác góc \(\widehat{MAB}\) (2)
(1);(2) \(\Rightarrow P\) là giao điểm 2 đường phân giác trong của tam giác MAB
\(\Rightarrow P\) là tâm đường tròn nội tiếp tam giác MAB

19 has worked
20 have lived - was
21 isn't - is cooking
22 Do you know - is talking
23 broke - was playing
24 has just repaired
25 washes
26 was listening
27 are playing
28 Have you cried
29 is living - prefers
30 wouldn't have finished
31 was watching
32 is going to invite
33 know - to answer
34 are going
35 have collected
36 is repairing - has been working
37 was walking - saw
38 haven't finished
39 haven't seen - left
40 have been walking
41 have been learning
42 have stayed
43 left
44 has driven
45 is coming
46 was working
47 was fishing
48 will like

10A
11C
12A
13A
14D
15D
16C
17A
18C
19C
20A
21A
22D
23A
24D
25A
26C
27A
28C
29A
30A
31C
Gọi vận tốc lúc về của người đó là x(km/h)
(Điều kiện: x>0)
Vận tốc lúc đi là x+10(km/h)
Thời gian người đó đi từ A đến B là \(\dfrac{60}{x+10}\left(giờ\right)\)
Thời gian người đó đi từ B về A là \(\dfrac{60}{x}\left(giờ\right)\)
Thời gian về nhiều hơn thời gian đi là 30p=0,5 giờ nên ta có:
\(\dfrac{60}{x}-\dfrac{60}{x+10}=0,5\)
=>\(\dfrac{60x+600-60x}{x\left(x+10\right)}=0,5\)
=>\(x\left(x+10\right)=\dfrac{600}{0,5}=1200\)
=>\(x^2+10x-1200=0\)
=>(x+40)(x-30)=0
=>\(\left[{}\begin{matrix}x+40=0\\x-30=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\left(loại\right)\\x=30\left(nhận\right)\end{matrix}\right.\)
Vậy: Vận tốc lúc về của người đó là 30km/h