Lập bảng thống kê các cuộc kháng chiến chống giặc ngoại xâm thắng lợi tiêu biểu của quân dân ta từ thế kỉ 10 đến thế kỉ 18 theo mẫu tên cuộc kháng chiến thời gian lãnh đạo chiến thắng tiêu biểu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(f\left(x\right)=x^3+x+1\) thì \(f\left(x\right)\) liên tục trên \(ℝ\)
Ta có \(f\left(-1\right)=\left(-1\right)^3-1+1=-1< 0\)
\(f\left(0\right)=1>0\)
\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\)
Do đó tồn tại ít nhất 1 số \(c\in\left(-1;0\right)\) sao cho \(f\left(c\right)=0\). Điều này tương đương với pt \(x^3+x+1=0\) có ít nhất 1 nghiệm âm lớn hơn \(-1\).

#include <bits/stdc++.h>
using namespace std;
int main(){
int n,k;
cin >> n >> k;
int a[n];
for (int i=0;i<n;i++)
cin>> a[i];
for (int i=0;i<n;i++)
if (a[i]%k==0) cout << a[i] <<" ";
return 0;
}

Trước tiên ta có một bổ đề sau:
Bổ đề: Cho 2 số \(a,b\) sao cho cả \(a,b\) đều viết được dưới dạng tổng của 4 số chính phương. Khi đó tích \(p=ab\) cũng có thể biểu diễn được thành tổng của 4 số chính phương.
\(\left(a_1^2+a_2^2+a_3^2+a_4^2\right)\left(b_1^2+b_2^2+b_3^2+b_4^2\right)\)
\(=\left(a_1b_1-a_2b_2-a_3b_3-a_4b_4\right)^2+\left(a_1b_2+a_2b_1+a_3b_4-a_4b_3\right)^2\) \(+\left(a_1b_3-a_2b_4+a_3b_1+a_4b_2\right)^2+\left(a_1b_4+a_2b_3-a_3b_2+a_4b_1\right)^2\)
Chứng minh thì bạn khai triển ra thôi.
Ta thấy \(0=0^2+0^2+0^2+0^2\)
\(1=0^2+0^2+0^2+1^2\)
\(2=0^2+0^2+1^2+1^2\)
Từ bổ đề trên, ta thấy chỉ cần chứng minh khẳng định đúng với số nguyên tố lẻ \(p\) thì coi như bài toán hoàn tất.
(Vì mọi số tự nhiên đều có thể viết được dưới dạng \(2^n.t\) với \(t\) lẻ)
Ta có số dư của \(a^2\) khi chia cho \(p\) luôn phân biệt khi cho \(a\) chạy từ \(0\) đến \(\dfrac{p-1}{2}\). Thật vậy, chọn \(a\) bất kì và đặt \(c=a^2modp\) \(\Rightarrow a\) là nghiệm của đa thức \(x^2-c\) trên trường \(Z/pZ\). Tương tự với \(p-a\left(\ne a\right)\). Ta biết rằng trong một trường \(K\), bất kì đa thức bậc \(n\) nào cũng chỉ có tối đa \(n\) nghiệm. Vì vậy không còn \(a\) nào khác là nghiệm của \(x^2-c\) nữa. Điều này có nghĩa là với mỗi số \(i\) trong tập hợp \(\left\{0,1,...,\dfrac{p-1}{2}\right\}\) thì tồn tại duy nhất \(a\) để \(a^2\equiv i\left[p\right]\)
Tương tự, khi \(b\) chạy từ tập \(\left\{0,1,...,\dfrac{p-1}{2}\right\}\) thì \(-b^2-1\) phân biệt. Áp dụng nguyên lí Dirichlet, tồn tại \(a,b\) sao cho \(a^2\equiv-b^2-1\left[p\right]\) \(\Leftrightarrow a^2+b^2+1^2+0^2=np\) với \(n\inℕ\)
Gọi \(m\) là số tự nhiên nhỏ nhất để \(mp\) là tổng của 4 số chính phương, \(x_1^2+x_2^2+x_3^2+x_4^2\). Ta chứng minh bằng phản chứng rằng \(m=1\) . Giả sử \(m\ne1\). Ta sẽ chỉ ra mâu thuẫn bằng việc chứng minh tồn tại một số tự nhiên \(r< m\) mà \(rp\) là tổng của 4 số chính phương.
Với mỗi \(x_i\) và \(y_i\) có cùng số dư khi chia cho \(m\) và nằm giữa \(\dfrac{-m+1}{2}\) và \(\dfrac{m}{2}\), ta có \(y_1^2+y_2^2+y_3^2+y_4^2=mr\), với \(0< r< m\)
Áp dụng bổ đề, ta có \(mpmr=z_1^2+z_2^2+z_3^2+z_4^2\). Vì \(x_i\equiv y_i\left[m\right]\) nên \(z_i⋮m\). Thật vậy:
\(z_1=x_1y_1+x_2y_2+x_3y_3+x_4y_4\) \(\equiv x_1^2+x_2^2+x_3^2+x_4^2\) \(\equiv mp\equiv0\left[m\right]\)
\(z_2=x_1y_2-x_2y_1+x_3y_4-x_4y_3\equiv x_1x_2-x_2x_1+x_3x_4-x_4x_3\equiv0\left[m\right]\)
Bằng cách tương tự chứng minh được \(z_3,z_4⋮m\)
Vậy với \(w_i=\dfrac{z_i}{m}\) thì \(w_1^2+w_2^2+w_3^2+w_4^2=rp\), điều này mâu thuẫn với tính nhỏ nhất của \(m\).
(Ta loại TH \(y_1=y_2=y_3=y_4=\dfrac{m}{2}\), khi đó \(r=m\); và TH \(y_1=y_2=y_3=y_4=0\), khi đó \(r=0\) vì cả 2 TH này đều cho ra \(mp=x_1^2+x_2^2+x_3^2+x_4^2⋮m^2\), vô lí vì \(p\) là số nguyên tố lớn hơn \(m\))
Do vậy điều giả sử là sai \(\Rightarrow\) đpcm.

a) Có \(A'H=\dfrac{a\sqrt{3}}{2}\). Lại có \(AH\perp\left(A'B'C'\right)\) tại H nên \(\widehat{AA',\left(A'B'C'\right)}=\widehat{AA'H}=60^o\)
\(\Rightarrow AH=A'H.\tan60^o\) \(=\dfrac{a\sqrt{3}}{2}.\sqrt{3}=\dfrac{3a}{2}\)
b) Kẻ \(HK\perp A'B'\) tại K, \(HL\perp AK\) tại L.
Ta thấy \(A'B'\perp KH\) và \(A'B'\perp AH\) nên \(A'B'\perp\left(AHK\right)\)
\(\Rightarrow A'B'\perp HL\)
Mà \(HL\perp AK\) nên \(HL\perp\left(AA'B\right)\) \(\Rightarrow\left(AHK\right)\perp\left(AA'B\right)\)
Hơn nữa có \(AH\perp\left(A'B'C'\right)\) nên \(\left(AHK\right)\perp\left(A'B'C'\right)\)
Do đó góc nhị diện \(\left[A,A'B',C'\right]\) chính là \(\widehat{AKH}\)
Ta có \(\dfrac{1}{HK^2}=\dfrac{1}{HA'^2}+\dfrac{1}{HB'^2}\) \(=\dfrac{1}{\left(\dfrac{a\sqrt{3}}{2}\right)^2}+\dfrac{1}{\left(\dfrac{a}{2}\right)^2}\) \(=\dfrac{16}{3a^2}\)
\(\Rightarrow HK=\dfrac{a\sqrt{3}}{4}\)
\(\Rightarrow\widehat{AKH}=\tan^{-1}\left(\dfrac{AH}{KH}\right)\) \(=\tan^{-1}\left(\dfrac{\dfrac{3a}{2}}{\dfrac{a\sqrt{3}}{4}}\right)\) \(=\tan^{-1}\left(2\sqrt{3}\right)\) \(\approx73,9^o\)
Vậy ...
c) Gọi M là trung điểm BC. Khi đó dễ thấy tứ giác AMHA' là hình bình hành. Kẻ \(AX\perp HM\) tại X.
Ta có \(BC\perp AM\) và \(BC\perp AH\) nên \(BC\perp\left(AMH\right)\)
\(\Rightarrow BC\perp AX\). Lại có \(AX\perp HM\) nên \(AX\perp\left(BB'C'\right)\)
\(\Rightarrow\left(AA'HM\right)\perp\left(BB'C'\right)\)
Hơn nữa vì \(AH\perp\left(A'B'C'\right)\) nên \(\left(AA'HM\right)\perp\left(A'B'C'\right)\)
Do đó góc nhị diện \(\left[B,B'C',A'\right]\) chính là \(\widehat{A'HM}=90^o+\widehat{AHM}=90^o+\widehat{A'AH}=90^o+30^o=120^o\)
d) \(S_đ=\dfrac{a^2\sqrt{3}}{4}\)
\(\Rightarrow V_{lt}=S_đ.h\) \(=\dfrac{a^2\sqrt{3}}{4}.\dfrac{3a}{2}\) \(=\dfrac{3a^2\sqrt{3}}{8}\) (đvtt)

a) Ta có \(F_{13}=\dfrac{k\left|q_1q_3\right|}{AC^2}\) \(=\dfrac{9.10^9\left|6.10^{-6}.4.10^{-6}\right|}{\left(0,08\right)^2}\) \(=33,75\left(N\right)\)
Đồng thời \(F_{13}=F_{23}\) do \(q_1=q_2\)
\(\Rightarrow F=\sqrt{F_{13}^2+F_{23}^2+2F_{13}F_{23}\cos\left(\overrightarrow{F_{13}},\overrightarrow{F_{23}}\right)}\)
\(=\sqrt{33,75^2+33,75^2+2.33,75.33,75\cos60^o}\)
\(\approx58,46\left(N\right)\)
Vậy vector lực điện do 2 điện tích q1, q2 tác dụng lên q3 là một vector có giá trùng với đường trung trực của AB và có độ lớn khoảng \(58,46N\)
bouty hunter