Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, A'A = a√3. Tính góc giữa A'B và mặt phẳng (ABCD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
\(\Leftrightarrow\left[f^2\left(x\right)\right]'-3\left(x+1\right)^2=\left[\left(x^2+x\right).f\left(x\right)\right]'\)
\(\Leftrightarrow\left[f^2\left(x\right)\right]'-\left[\left(x^2+x\right).f\left(x\right)\right]'=3\left(x+1\right)^2\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow f^2\left(x\right)-\left(x^2+x\right).f\left(x\right)=\int3\left(x+1\right)^2dx=\left(x+1\right)^3+C\)
Thay \(x=0\Rightarrow1^2-0=1+C\Rightarrow C=0\)
\(\Rightarrow f^2\left(x\right)-\left(x^2+x\right)f\left(x\right)=\left(x+1\right)^3\)
\(\Leftrightarrow\left[f\left(x\right)+x+1\right]\left[f\left(x\right)-\left(x+1\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}f\left(x\right)=-x-1\\f\left(x\right)=\left(x+1\right)^2\end{matrix}\right.\)
Thay \(x=0\) vào thấy \(f\left(x\right)=-x-1\) ko thỏa mãn giả thiết \(f\left(0\right)=1\)
\(\Rightarrow f\left(x\right)=\left(x+1\right)^2\)
\(\Rightarrow f'\left(x\right)=2\left(x+1\right)\)
Hoành độ giao điểm: \(\left(x+1\right)^2=2\left(x+1\right)\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(V=\pi\int\limits^1_{-1}\left[4\left(x+1\right)^2-\left(x+1\right)^4\right]=\dfrac{64\pi}{15}\)
Gọi các số thỏa mãn ycbt là \(N=\overline{\alpha\beta\gamma\delta\varepsilon\zeta}\)
Khi đó \(21\le\alpha+\beta+\gamma+\delta+\varepsilon+\zeta\le33\). Do đó để N chia hết cho 9 thì \(\alpha+\beta+\gamma+\delta+\sigma+\zeta=27\)
Ta liệt kê tất cả các bộ số \(\left(\alpha,\beta,\gamma,\delta,\varepsilon,\zeta\right)\) thỏa mãn: \(\left(1,2,3,6,7,8\right);\left(1,2,4,5,7,8\right);\left(1,3,4,5,6,8\right);\left(2,3,4,5,6,7\right)\)
Mỗi bộ như thế có \(6!=120\) hoán vị nên có tất cả \(4.120=480\) số thỏa mãn ycbt.
\(f'\left(x\right)=-4x^3.\left[f\left(x\right)\right]^2\Rightarrow\dfrac{f'\left(x\right)}{\left[f\left(x\right)\right]^2}=-4x^3\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow-\dfrac{1}{f\left(x\right)}=\int-4x^3dx=-x^4+C\)
\(f\left(0\right)=1\Rightarrow-\dfrac{1}{f\left(0\right)}=0^4+C\Rightarrow C=-1\)
\(\Rightarrow-\dfrac{1}{f\left(x\right)}=-x^4-1\Rightarrow f\left(x\right)=\dfrac{1}{x^4+1}\)
\(\int\limits^3_0x^3.f\left(x\right)dx=\int\limits^3_0\dfrac{x^3}{x^4+1}dx\) (tích phân này rất đơn giản em tự tính hoặc bấm máy cũng được)
\(\int_1^2\dfrac{2x+3}{x}dx=\int_1^22+\dfrac{3}{x}=\left(2\cdot2+3\cdot ln\left|2\right|\right)-\left(2\cdot1+3\cdot ln1\right)\)
\(=4+3\cdot ln2-2-0=2+3\cdot ln2\)
=>a=3; b=2
=>S=a+b=5
\(\left|z+1\right|=\left|z-2\right|\Rightarrow\left(x+1\right)^2+y^2=\left(x-2\right)^2+y^2\)
\(\Rightarrow2x+1=-4x+4\Rightarrow x=\dfrac{1}{2}\)
\(\left|z\right|=3\Rightarrow x^2+y^2=9\)
\(\Rightarrow y^2=9-x^2=\dfrac{35}{4}\)
\(\Rightarrow y=\pm\dfrac{\sqrt{35}}{2}\)
\(\Rightarrow x+2y=\dfrac{1}{2}\pm\dfrac{\sqrt{35}}{2}\)
\(A'A\perp\left(ABCD\right)\Rightarrow\widehat{A'BA}\) là góc giữa A'B và (ABCD)
\(tan\widehat{A'BA}=\dfrac{A'A}{AB}=\sqrt{3}\)
\(\Rightarrow\widehat{A'BA}=60^0\)