Chứng minh rằng: \(n^5\)- \(5n^3\)+\(4n\)chia hết cho 120 với mọi n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Không có dấu '' = '' để tìm x nhé.
\([4.\left(x-y\right)^5+2.\left(x-y\right)^3-3.\left(x-y\right)^2];\left(y-x\right)^2\)
\(=[4.\left(x-y\right)^5+2.\left(x-y\right)^3-3.\left(x-y\right)^2]:\left(x-y\right)^2\)
\(=4.\left(x-y\right)^3+2.\left(x-y\right)-3\)
\(=4.\left(x^3-3x^2y+3xy^2-y^3\right)+2x-2y-3\)
\(=4x^3-12x^2y+12xy^2-y^3+2x-2y-3\)

\(x.\left(x^2-4\right)-3x+6\)
\(=x.\left(x+2\right).\left(x-2\right)-3.\left(x-2\right)\)
\(=\left(x^2+2x\right).\left(x-2\right)-3.\left(x-2\right)\)
\(=\left(x-2\right).\left(x^2+2x-3\right)\)
\(=\left(x-2\right).\left(x^2-x+3x-3\right)\)
\(=\left(x-2\right).[x.\left(x-1\right)+3.\left(x-1\right)]\)
\(=\left(x-2\right).\left(x-1\right).\left(x+3\right)\)


\(\left(3x-5\right)^2-\left(x-1\right)^2=0\)
\(\Rightarrow\left(3x-5-x+1\right).\left(3x-5+x-1\right)=0\)
\(\Rightarrow\left(2x-4\right).\left(4x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-4=0\\4x-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=4\\4x=6\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
\(16.\left(2-3x\right)+x^2.\left(3x-2\right)=0\)
\(\Rightarrow16.\left(2-3x\right)-x^2.\left(2-3x\right)=0\)
\(\Rightarrow\left(16-x^2\right).\left(2-3x\right)=0\)
\(\Rightarrow\left(4-x\right).\left(4+x\right).\left(2-3x\right)=0\)
Trường hợp 1: \(4-x=0\Rightarrow x=4\)
Trường hợp 2: \(4+x=0\Rightarrow x=-4\)
Trường hợp 3: \(2-3x=0\Rightarrow3x=2\Rightarrow x=\frac{2}{3}\)

\(x^2.\left(x^2+4\right)-x^2-4=0\)
\(\Rightarrow x^2.\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Rightarrow\left(x^2+4\right).\left(x^2-1\right)=0\)
\(\Rightarrow\left(x^2+4\right).\left(x-1\right).\left(x+1\right)=0\)
Với mọi \(x\) ta có: \(x^2+4\ge4\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(\left(2x-1\right)^2-\left(x-3\right)^2=0\)
\(\Rightarrow\left(2x-1-x+3\right).\left(2x-1+x-3\right)=0\)
\(\Rightarrow\left(x+2\right).\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\3x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{3}\end{cases}}\)
