K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

Xét (O) có \(\widehat{ADC}\) là góc nội tiếp chắn cung AC

nên \(\widehat{ADC}=\dfrac{\widehat{AOC}}{2}=\dfrac{90^0}{2}=45^0\)

b: M là điểm chia cung AC thành hai cung nhỏ bằng nhau

=>\(sđ\stackrel\frown{MA}=\dfrac{sđ\stackrel\frown{AC}}{2}=\dfrac{90^0}{2}=45^0\)

Xét (O) có \(\widehat{ADM}\) là góc nội tiếp chắn cung AM

nên \(\widehat{ADM}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MA}=\dfrac{1}{2}\cdot45^0=22,5^0\)

N chia cung BC thành hai cung nhỏ bằng nhau

=>\(sđ\stackrel\frown{BN}=\dfrac{sđ\stackrel\frown{BC}}{2}=45^0\)

Xét (O) có

\(\widehat{NCB}\) là góc nội tiếp chắn cung NB

=>\(\widehat{NCB}=\dfrac{sđ\stackrel\frown{NB}}{2}=\dfrac{45^0}{2}=22,5^0\)

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra AO là đường trung trực của BC

b: Xét (O) có

ΔCBD nội tiếp

CD là đường kính

Do đó: ΔCBD vuông tại B

=>CB\(\perp\)BD

mà AO\(\perp\)BC

nên AO//BD

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

Xét ΔABC vuông tại A có \(tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: Xét ΔBDC vuông tại B có BA là đường cao

nên \(BA^2=AD\cdot AC\)

=>\(AD=\dfrac{3^2}{4}=\dfrac{9}{4}=2,25\left(cm\right)\)

ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD=\sqrt{2,25^2+3^2}=3,75\left(cm\right)\)

Xét ΔBAD vuông tại A có AF là đường cao

nên \(BF\cdot BD=BA^2\left(1\right)\)

Xét ΔBAC vuông tại A có AE là đường cao

nên \(BE\cdot BC=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BF\cdot BD=BE\cdot BC\)

Xét tứ giác AEBF có \(\widehat{AEB}=\widehat{AFB}=\widehat{EBF}=90^0\)

nên AEBF là hình chữ nhật

ΔABC vuông tại A có AE là đường cao

nên \(\left\{{}\begin{matrix}AE\cdot BC=AB\cdot AC\\BE\cdot BC=BA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\\BE=\dfrac{3^2}{5}=1,8\left(cm\right)\end{matrix}\right.\)

AEBF là hình chữ nhật

=>\(S_{AEBF}=AE\cdot BE=2,4\cdot1,8=4,32\left(cm^2\right)\)

27 tháng 8

Bây giờ lớp 9 học đạo hàm rồi hả em?

26 tháng 8

`sqrt{6x - 2} = 4`

`ĐKXĐ: 6x - 2 >=0 <=> x >=1/3`

`Pt <=> 6x - 2 = 16`

`<=> 6x = 18`

`<=> x = 3 ` (Thỏa mãn)

Vậy ...

NV
26 tháng 8

ĐKXĐ: \(x\ge\dfrac{1}{3}\)

\(\sqrt{6x-2}=4\)

\(\Leftrightarrow6x-2=16\)

\(\Leftrightarrow6x=18\)

\(\Leftrightarrow x=3\)

NV
27 tháng 8

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+2\right)=-2m+2>0\Rightarrow m< 1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=m^2-2m+2\end{matrix}\right.\)

\(\left|\left(x_1+x_2\right)+x_1x_2\right|=3\)

\(\Leftrightarrow\left|2\left(m-2\right)+m^2-2m+2\right|=3\)

\(\Leftrightarrow\left|m^2-2\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2-2=3\\m^2-2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2=5\\m^2=-1\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=\sqrt{5}>1\left(loại\right)\\m=-\sqrt{5}\end{matrix}\right.\)

Vậy \(m=-\sqrt{5}\)

NV
26 tháng 8

Gọi thời gian làm 1 mình xong việc của người thứ nhất là x giờ, của người thứ hai là y giờ (với x;y>0)

Do người thứ nhất làm 1 mình cần nhiều hơn người thứ hai là 12 giờ nên:

\(x-y=12\) (1)

Trong 1 giờ người thứ nhất làm được \(\dfrac{1}{x}\) phần công việc

Trong 1 giờ người thứ hai làm được \(\dfrac{1}{y}\) phần công việc

Do 2 người làm chung trong 8 giờ xong việc nên:

\(8\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\Rightarrow8x+8y=xy\) (2)

Từ (1) và (2) ta có hệ:

\(\left\{{}\begin{matrix}x-y=12\\8x+8y=xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+12\\8\left(y+12\right)+8y=y\left(y+12\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y+12\\y^2-4y-96=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=12\Rightarrow x=24\\y=-8< 0\left(loại\right)\end{matrix}\right.\)

Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x(giờ) và y(giờ)

(Điều kiện: x>6; y>0)

Người thứ hai hoàn thành công việc nhanh hơn người thứ nhất là 6 giờ nên x-y=6(1)

Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai người làm được: \(\dfrac{1}{4}\)(công việc)

Do đó, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x-y=6\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+6\\\dfrac{1}{y+6}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{y+y+6}{y^2+6y}=\dfrac{1}{4}\\x=y+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2+6y=4\left(2y+6\right)=8y+24\\x=y+6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y^2+6y-8y-24=0\\x=y+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2-2y-24=0\\x=y+6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(y-6\right)\left(y+4\right)=0\\x=y+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=6\left(nhận\right)\\y=-4\left(loại\right)\end{matrix}\right.\\x=y+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=6+6=12\end{matrix}\right.\left(nhận\right)\)

Vậy: thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là 12(giờ) và 6(giờ)

Vì a>b

nên 4a>4b

=>4a+7>4b+7

mà 4b+7>4b+5

nên 4a+7>4b+5

18 tháng 8

Vì: \(a>b\) nên nhân a,b với \(4\), ta có:

\(4a>4b\)

Biết: \(7>5\)

\(\rightarrow4a+7>7b+5\left(đpcm\right)\)