Giải phương trình sau với a và m là tham số:
a) (2m-4) x +2-m = 0
b) (m+1)x = (3 m 2-1) x+m-1
c) ax + 2m = a + x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(3x+\left(-5+x\right)=7-\left(5x-4\right)\)
=>3x-5+x=7-5x+4
=>4x-5=-5x+11
=>9x=16
=>\(x=\dfrac{16}{9}\)
b: Đề thiếu vế phải rồi bạn
c: \(2\left(x+5\right)-9x=12-4\left(2x-3\right)\)
=>2x+10-9x=12-8x+12
=>-7x+10=-8x+24
=>-7x+8x=24-10
=>x=14
d: \(x-\left(3x+1\right)=-\left(x+1\right)+21\)
=>x-3x-1=-x-1+21
=>-2x-1=-x+20
=>-2x+x=20+1
=>-x=21
=>x=-21
Lời giải:
Gọi đa thức trên là $A$
$A=a^2b^2(a-b)-b^2c^2[(a-b)+(c-a)]+a^2c^2(c-a)$
$=a^2b^2(a-b)-b^2c^2(a-b)+a^2c^2(c-a)-b^2c^2(c-a)$
$=(a-b)(a^2b^2-b^2c^2)+(c-a)(a^2c^2-b^2c^2)$
$=(a-b)b^2(a^2-c^2)+(c-a)c^2(a^2-b^2)$
$=(a-b)b^2(a-c)(a+c)+(c-a)c^2(a-b)(a+b)$
$=(a-b)(a-c)[b^2(a+c)-c^2(a+b)]$
$=(a-b)(a-c)(b^2a+b^2c-ac^2-bc^2)$
$=(a-b)(a-c)[a(b^2-c^2)+bc(b-c)]$
$=(a-b)(a-c)(b-c)(ab+bc+ac)$
Lần sau bạn lưu ý, gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.
a) \(DKXD:\left\{{}\begin{matrix}x^2-4=\left(x-2\right)\left(x+2\right)\ne0\\x+2\ne0\\x-2\ne0\\1-\dfrac{x}{x+2}\ne0\end{matrix}\right.\Leftrightarrow x\ne\left\{2;-2\right\}\)
\(A=\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}-\dfrac{2}{x-2}\right):\left(1-\dfrac{x}{x+2}\right)\\ =\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}-\dfrac{2}{x-2}\right]:\dfrac{x+2-x}{x+2}\\ =\dfrac{x+x-2-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{2}\\ =\dfrac{x+x-2-2x-4}{2\left(x-2\right)}\\ =\dfrac{-6}{2\left(x-2\right)}=\dfrac{-3}{x-2}\)
b) Thay x=-4 (TMDK) vào biểu thức A, ta được:
\(A=\dfrac{-3}{-4-2}=\dfrac{-3}{-6}=\dfrac{1}{2}\)
c) Để A đạt gt nguyên thì: 3 chia hết cho (x-2)
=> x-2 thuộc Ư(3)={1;-1;3;-3}
=> x thuộc {3;1;5;-1} (TMDK)
Vậy x thuộc {3;1;5;-1} là các gt nguyên thỏa mãn A nguyên
Lời giải:
a.
Đơn thức:
$\frac{4}{5}x$: hệ số $\frac{4}{5}$, phần biến $x$
$(\sqrt{2}-1)xy$: hệ số $\sqrt{2}-1$, phần biến $xy$
$-3xy^2$: hệ số $-3$, phần biến $xy^2$
$\frac{1}{2}x^2y$: hệ số $\frac{1}{2}$, phần biến $x^2y$
$\frac{1}{x}y^3$: hệ số $1$, phần biến $\frac{1}{x}y^3$
$\frac{-3}{2}x^2y$: hệ số $\frac{-3}{2}$, phần biến $x^2y$
Các biểu thức còn lại không phải đơn thức.
c.
Gọi đa thức là $A(x)$
$A(x)=\frac{4}{5}x+(\sqrt{2}-1)xy-3xy^2+\frac{1}{2}x^2y+\frac{1}{x}y^3+\frac{-3}{2}x^2y$
$=\frac{4}{5}x+(\sqrt{2}-1)xy-3xy^2-x^2y+\frac{1}{x}y^3$
Bậc: $3$
ĐKXĐ: \(x\ne-3;x\ne3\)
\(\left(\dfrac{2x}{x-3}+\dfrac{x}{x+3}+\dfrac{2x^2+3x+1}{9-x^2}\right):\dfrac{x-1}{x+3}\)
\(=\left(\dfrac{2x}{x-3}+\dfrac{x}{x+3}-\dfrac{2x^2+3x+1}{x^2-9}\right):\dfrac{x-1}{x+3}\)
\(=\dfrac{2x\left(x+3\right)+x\left(x-3\right)-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-1}{x+3}\)
\(=\dfrac{2x^2+6x+x^2-3x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x-1}\)
\(=\dfrac{x^2-1}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x-1}\)
\(=\dfrac{x+1}{x-3}\)
\(x^3-8+\left(x-2\right)\left(x+1\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)
=>\(\left(x-2\right)\left(x^2+3x+5\right)=0\)
mà \(x^2+3x+5=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)
nên x-2=0
=>x=2
\(4x^4+81\)
\(=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
=>a=2; b=6
a+b=2+6=8
a: (2m-4)x+2-m=0
=>x(2m-4)=m-2
TH1: m=2
Phương trình sẽ trở thành \(x\left(2\cdot2-4\right)=2-2\)
=>0x=0(luôn đúng)
=>Phương trình có vô số nghiệm
TH2: \(m\ne2\)
Phương trình sẽ tương đương với \(x=\dfrac{m-2}{2m-4}=\dfrac{1}{2}\)
b: \(\left(m+1\right)x=\left(3m^2-1\right)x+m-1\)
=>\(\left(m+1\right)x-\left(3m^2-1\right)x=m-1\)
=>\(x\left(m+1-3m^2+1\right)=m-1\)
=>\(x\left(-3m^2+m+2\right)=m-1\)
=>\(x\left(-3m^2+3m-2m+2\right)=m-1\)
=>\(x\cdot\left(m-1\right)\left(-3m-2\right)=m-1\)
TH1: m=1
Phương trình sẽ trở thành \(x\left(1-1\right)\left(-3\cdot1-2\right)=1-1\)
=>0x=0(luôn đúng)
=>Phương trình có vô số nghiệm
TH2: m=-2/3
Phương trình sẽ trở thành:
\(x\left(-\dfrac{2}{3}-1\right)\left(-3\cdot\dfrac{-2}{3}-2\right)=\dfrac{-2}{3}-1\)
=>0x=-5/3(vô lý)
=>Phương trình vô nghiệm
TH3: \(m\notin\left\{1;-\dfrac{2}{3}\right\}\)
Phương trình sẽ tương đương với \(x=\dfrac{m-1}{\left(m-1\right)\left(-3m-2\right)}=\dfrac{-1}{3m+2}\)
c: \(ax+2m=a+x\)
=>ax-x=a-2m
=>x(a-1)=a-2m
TH1: a=1
Phương trình sẽ trở thành:
x(1-1)=1-2m
=>0x=1-2m
-Nếu \(m=\dfrac{1}{2}\) thì 0x=1-2*1/2=0
=>Phương trình có vô số nghiệm
Nếu \(m\ne\dfrac{1}{2}\) thì phương trình vô nghiệm
TH2: a<>1
Phương trình sẽ tương đương với \(x=\dfrac{a-2m}{a-1}\)