Cho △ABC cân tại a. M là trung điểm của BC
a)CM△ABM=△ACM
b)Qua K kẻ MH,MK lần lượt vuông góc với AB,AC.CM MH=MK
c) Gọi I là giao điểm HM,AC ;J giao điểm KM,AB.CM△AHJ cân;IJ//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x/2 = 1/6 + 3/y ⇒ x/2 - 1/6 = 3/y ⇒ 3x - 1/ 6 = 3/y
Vậy y( 3x - 1 ) = 18
Mà x; y nguyên nên 3x - 1 nguyên và y; 3x - 1 ϵ Ư( 18 ) = { -1; 1; 2; -2; -3; 3; -6; 6; 18; -18 }
Vì 3x - 1 chia 3 dư 2 nên ( 3x - 1 ) ϵ { 2; -1 }
Nếu 3x - 1 = 2 ⇒ x = 1; y = 9
Nếu 3x - 1 = -1 ⇒ x = 0; y = -18
Vậy các cặp số nguyên ( x; y ) cần tìm là ( 1; 9 ) ; ( 0; -18 )
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}\)
\(=\dfrac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}\)
\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Từ đó suy ra
\(\dfrac{1}{x+y+z}=2\Leftrightarrow x+y+z=\dfrac{1}{2}\).
\(\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=-\dfrac{5}{6}\end{matrix}\right.\).
\(\left(\left|x\right|-2011\right)^{\left(2+2008\right)}\cdot\left(2+2009\right)=-\left(2^3-3^2\right)^{2009}\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=-\left(8-9\right)^{2009}\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=-\left(-1\right)^{2009}\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=-\left(-1\right)\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=1\)
\(\left(\left|x\right|-2011\right)^{2010}=\dfrac{1}{2011}\)
???
2012 . | x - 2011| + (x-2011)2 = 2013 . | 2011 - x|
|x-2011|.|x-2011| + 2012 . | x - 2011| - 2013 . | 2011- x| =0
|x - 2011|.| x - 2011| + 2012 .| x - 2011| - 2013 | x - 2011| = 0
| x- 2011| .| x -2011| - | x - 2011| = 0
| x - 2011|. { | x - 2011| - 1} = 0
\(\left[{}\begin{matrix}\left|x-2011\right|=0\\\left|x-2011\right|-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2011\\x=2012\\x=2010\end{matrix}\right.\)
Kết luận x \(\in\) { 2010; 2011; 2012}
Lời giải:
Để $A$ nguyên thì $2x-3\vdots x+1$
$\Rightarrow 2(x+1)-5\vdots x+1$
$\Rightarrow 5\vdots x+1$
$\Rightarrow x+1\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow x\in\left\{0; -2; 4; -6\right\}$
Định lý Pythagoras là mối liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền bằng tổng bình phương của hai cạnh còn lại.
b) \(\left(x-1\right)^3=\dfrac{1}{8}\)
\(\left(x-1\right)^3=\left(\dfrac{1}{2}\right)^3\)
\(x-1=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}+1\)
\(x=\dfrac{3}{2}\)
Trường hợp $1$
\(\left\{{}\begin{matrix}3x-1=1\\2y+1=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{3}{2}\end{matrix}\right.\left(\text{loại}\right)\)
Trường hợp $2$
\(\left\{{}\begin{matrix}3x-1=4\\2y+1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=0\end{matrix}\right.\left(\text{loại}\right)\)
Trường hợp $3$
\(\left\{{}\begin{matrix}3x-1=2\\2y+1=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\left(\text{loại}\right)\)
Xét x nguyên ta có:
x nguyên -> 3x nguyên -> 3x - 1 nguyên
y nguyên -> 2y nguyên -> 2y + 1 nguyên
Vậy 3x - 1 và 2y + 1 là các số nguyên sao cho chúng là ước của 4.
Suy ra \(\left(3x-1\right)\inƯ\left(4\right)\Rightarrow\left(3x-1\right)\in\left\{1;-1;4;-4\right\}\)
Ta có bảng sau:
3x - 1 | 1 | -1 | 4 | -4 |
x | \(\dfrac{2}{3}\) | 0 | \(\dfrac{5}{3}\) | -1 |
2y + 1 | 4 | -4 | 1 | -1 |
y | \(\dfrac{3}{2}\) | \(-\dfrac{5}{2}\) | 0 | -1 |
Chọn hay loại? | Loại | Loại | Loại | Chọn |
Vậy x = -1; y = -1
Làm xong nhớ tick cho mình đấy nhé !
a) Xét ∆ABM và ∆ACM, ta có :
AB = AC (vì ∆ABC cân tại A)
AM là cạnh chung
MB = MC (vì M là trung điểm của BC)
ð ∆ABM = ∆ACM (c.c.c)
b) Xét ∆AMH và ∆AMK, ta có :
Góc HAM = góc KAM
AM là cạnh chung
Góc AHM = góc AKM
ð ∆AMH = ∆AMK
ð MH = MK (g.c.g)
c) Trong ∆AJI, ta có :
Góc AJI = (180° - góc A) : 2 (1)
Trong ∆ABC, ta có :
Góc abc = (180° - góc A) : 2 (2)
Từ (1) và (2) => góc AJI = góc ABC
Mà 2 góc này ở vị trí đồng vị
ð IJ // BC