1 bể cá dạng hình hộp chữ nhật có kích thước là 50cm x 45cm x 45cm đang chứa 1 lượng nước có chiều cao mực nước là 33cm như hình minh họa. Sau khi thả khối rubik vào bể thì bể đầy. Tính độ dài cạnh của khối rubik( theo cm) ,biết rằng khối rubik có dạnh hình lập phương và chìm hoàn toàn trong nước.
Ai giúp mik vs, mình đag cần gấp ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
Em cần ghi các số theo kiểu xếp hình que diêm thì mới quan sát cụ thể số que diêm để di chuyển phù hợp thành một phép tính đúng em nhé
Em cần xếp số bằng que diêm thì mới có thể di chuyển chính xác được em nhé.
a: \(M\in SA\)
=>\(M\in\left(DMN\right)\cap\left(SAD\right)\)
mà \(D\in\left(DMN\right)\cap\left(SAD\right)\)
nên \(\left(DMN\right)\cap\left(SAD\right)=MD\)
b: \(N\in BC\)
=>\(N\in\left(DMN\right)\cap\left(ABCD\right)\)
mà \(D\in\left(DMN\right)\cap\left(ABCD\right)\)
nên \(\left(DMN\right)\cap\left(ABCD\right)=DN\)
c: \(M\in SA\)
=>\(M\in\left(DMN\right)\cap\left(SAB\right)\)
Trong mp(ABCD), gọi E là giao điểm của DN với AB
=>\(E\in\left(DMN\right)\cap\left(SAB\right)\)
Do đó: \(\left(DMN\right)\cap\left(SAB\right)=ME\)
Khi kéo dài BC về phía B thêm 5cm thì diện tích tăng thêm 37,5cm2 nên 5 lần chiều cao của tam giác NBC là:
2x37,5=75(cm)
=>Chiều cao của tam giác NCB là 75:5=15(cm)
Độ dài đoạn BC là:
150x2:15=300:15=20(cm)
Đây là toán nâng cao chuyên đề thể tích hình khối, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Thể tích bể là: 50 x 45 x 45 = 101250 (cm3)
Thể tích nước hiện có trong bể là:
50 x 45 x 33 = 74250 (cm3)
Thể tích của khối rubic là:
101250 - 74250 = 27000 (cm3)
Vì 27000 = 30 x 30 x 30
Vậy cạnh của khối rubic là 30 cm.
Đáp số 30 cm.