Tìm x,y nguyên dương sao cho (x+y)4=40x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(abc\le\frac{\left(a+b+c\right)^3}{27}\) ; \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Mà \(a^2+b^2+c^2=3abc\)
=>\(\frac{\left(a+b+c\right)^2}{3}\le\frac{\left(a+b+c\right)^3}{27}.3\)
=> \(a+b+c\ge3\)
Áp dụng bđt bunhia dạng phân thức ta có:
\(M\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\)
Đặt \(a+b+c=x\left(x\ge3\right)\)
=> \(M\ge\frac{x^2}{x+6}\)
Xét \(\frac{x^2}{x+6}\ge\frac{5}{9}x-\frac{2}{3}\)
<=>\(x^2\ge\frac{5}{9}x^2+\frac{8}{3}x-4\)
<=>\(\left(\frac{2}{3}x-2\right)^2\ge0\)(luôn đúng)
=> \(M\ge\frac{5}{9}x-\frac{2}{3}\ge\frac{5}{9}.3-\frac{2}{3}=1\)
=>\(MinM=1\)xảy ra khi a=b=c=1
\(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)
\(=\sqrt{5}\left(2-5-4+11\right)=4\sqrt{5}\)
ĐK \(-2\ge x\le2\)
Ta có \(9x^2+2\sqrt{x^2-4}=36\)
\(\Leftrightarrow9\left(x^2-4\right)+2\sqrt{x^2-4}=0\)
Đặt \(\sqrt{x^2-4}=t\left(t\ge0\right)\Rightarrow x^2-4=t^2\)ta có
\(9t^2+2t=0\Leftrightarrow t\left(9t+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=0\\9t+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=0\left(TM\text{Đ}K\right)\\t=-\frac{2}{9}\left(lo\text{ại}\right)\end{cases}}}\)
\(\Leftrightarrow\sqrt{x^2-4}=0\Leftrightarrow x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\text{Đ}K\right)\)
Sai đề rồi
Tìm tất cả các số nguyên dương thoả mãn:(x+y)^4=40x+41
Do x, y là số nguyên dương nên 40x < 41x; 41 ≤41y≤41y , khi đó ta có:
( x + y )4 = 40x + 41 < 41x + 41y = 41( x + y )
Suy ra ( x + y )4 < 41( x + y )
\(\Leftrightarrow\)\(\left(x+y\right)^3< 41< 64=4^3\)
\(\Rightarrow\)\(x+y< 4\) ( 1 )
Ta thấy x là số nguyên dương nên 40x + 41\(\ge\) 40 * 1 + 41 = 81
\(\Rightarrow\) \(\left(x+y\right)^4\ge81\)
\(\Rightarrow\)\(x+y\ge3\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(3\le x+y< 4\)
Mà ( x + y ∈ N∗) => x + y = 3
Suy ra ( x ; y ) = (1; 2 ) ; ( 2 ; 1 ) ( do x, y là số nguyên dương )
Thử lại chỉ có x = 1 ; y = 2 thỏa mãn
Vậy x = 1 ; y = 2