chứng minh rằng tồn tại số có dạng 2023^n-1 chia hết cho 2022 (với n thuộc N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$x,y$ có điều kiện gì không bạn? Là số nguyên, số tự nhiên,....?
Số công nhân sau khi đội đã được tăng cường thêm là:
50 + 25 = 75 (công nhân)
Gọi n1 là công việc 50 công nhân hoàn thành và n2 là công việc 75 công nhân hoàn thành
Gọi t1 là thời gian 50 công nhân hoàn thành công việc và t2 là thời gian 75 công nhân hoàn thành công việc.
Do số công nhân và thời gian hoàn thành công việc tỉ lệ nghịch nhau
=> n2.t2 = n1.t1
=> 75 x t2 = 50 x 30
=> t2 = 20 ngày
Vậy để làm xong công việc đội đó cần mất 20 ngày
Ta có : A = 2x + 5y
Thay giá trị x = 3; y = 4 vào A, ta được:
A = 2.3 + 5.4
A = 6 + 20
A = 26
Vậy A = 26
a. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$
$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$
b. Áp dụng tính chất dãy tỉ số bằng nhau:
$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$
$\Rightarrow x=(-84):7=-12; y=-84:3=-28$
c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$
$\Rightarrow x=2.5=10; y=9.2=18$
d. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$
$\Rightarrow x=16.15=240; y=7.16=112$
e.
Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$
Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$
Với $k=10$ thì $x=5k=50; y=2k=20$
Với $k=-10$ thì $x=5k=-50; y=2k=-20$
Đề lỗi rồi bạn. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
\(\dfrac{x}{4}=\dfrac{y}{5}\) và x + y = 27
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{27}{9}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\)
\(\dfrac{y}{5}=3\Rightarrow y=15\)
Vậy x = 12 , y = 15
Vì :
| x - y | cùng tính chất chẵn lẻ với x - y
| y - z | cùng tính chất chẵn lẻ với y - z
| z - t | cùng tính chất chẵn lẻ với z - t
| t - x | cùng tính chất chẵn lẻ với t - x
\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\) cùng chẵn lẻ với \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)\)
Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-t\right)+\left(t-x\right)=\left(x-x\right)+\left(y-y\right)+\left(z-z\right)+\left(t-t\right)=0\)
là số chẵn
= > \(\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\)là số chẵn
Mà 2017 là số lẻ \(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-t\right|+\left|t-x\right|\ne2017\)
= > không có các số thỏa mãn
Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$
Thực chất là với mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$