a) \(\dfrac{3x-7}{3}=\dfrac{-27}{7-3x}\)
b) \(\dfrac{3x+5}{12}=\dfrac{3}{5+3x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: \(x\ne6\)
\(\dfrac{7}{x-6}=\dfrac{x-6}{7}\)
\(\Leftrightarrow\dfrac{49}{7\left(x-6\right)}=\dfrac{\left(x-6\right)^2}{7\left(x-6\right)}\)
\(\Rightarrow\left(x-6\right)^2=49=7^2\)
\(\Rightarrow\left[{}\begin{matrix}x-6=7\\x-6=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=13\\x=-1\end{matrix}\right.\) (thỏa mãn)
b. ĐKXĐ: \(x\ne\dfrac{1}{2}\)
\(\dfrac{2x-1}{8}=\dfrac{-2}{1-2x}\)
\(\Leftrightarrow\dfrac{\left(2x-1\right)^2}{8\left(2x-1\right)}=\dfrac{16}{8\left(2x-1\right)}\)
\(\Rightarrow\left(2x-1\right)^2=16=4^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\) (thỏa mãn)
Lời giải:
Theo BĐT tam giác thì:
$AC< AB+AC$ hay $AC< 9$
$BC< AB+AC$ hay $7< 2+AC$ hay $AC>5$ (cm)
Vậy $9> AC> 5$. Mà $AC$ là số nguyên tố nên $AC=7$
Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là x ,y ( \(x,y\in\)N* ) ( m )
Theo đề bài ta có :
x,y tỉ lệ với 7,5 hay \(\dfrac{x}{7}=\dfrac{y}{5}\) và xy = 315
Đặt \(\dfrac{x}{7}=\dfrac{y}{5}=k\)
x = 7k
y = 5k
xy = 7k . 5k = 35k2 =315
< = > k2 = 9
< = > \(\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\) ( k = -3 loại vì độ dài của cạnh luôn dương )
= > x = 7k = 7 . 3 = 21
y = 5k = 5.3 = 15
Chu vi của hình chữ nhật là :
( 21 + 15 ).2 = 72 ( m )
Vậy chu vi hình chữ nhật là 72 m
a. Kiểm tra lại mẫu số vế phải, \(7-5x\) hay \(7-3x\)
b. ĐKXĐ: \(x\ne-\dfrac{5}{3}\)
\(\dfrac{3x+5}{12}=\dfrac{3}{5+3x}\)
\(\Leftrightarrow\dfrac{\left(3x+5\right)^2}{12\left(3x+5\right)}=\dfrac{36}{12\left(3x+5\right)}\)
\(\Rightarrow\left(3x+5\right)^2=36=6^2\)
\(\Rightarrow\left[{}\begin{matrix}3x+5=6\\3x+5=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{11}{3}\end{matrix}\right.\) (thỏa mãn)