cho 2 đa thức f(x) = -2x3+7-6x+5x4-2x3 g(x)=5x2+9x-2x4-x2+4x3-12
a, thu gọn và sắp xếp hai đa thức trên lũy thừa giảm dần của biến
b)tính f(x)+g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài cạnh chiếc hộp hình lập phương là a
Theo đề bài, ta có
( a + 2 )2 . 6 - a2 . 6 = 216
6 [( a + 2 )2 - a2 ] = 216
a2 + 4a + 4 - a2 = 216 : 6 = 36
4( a + 1 ) = 36
a + 1 = 36 : 4 = 9
a = 8
Vậy độ dài cạnh chiếc hộp hình lập phương là 8 cm
mk chỉ cần thay x bằng 1 vào đó rồi tính đc P bằng 0 thì suy ra x bằng 1 là nghiệm của đa thức P là xog
a) Thay x = 1 vào đa thức F(x) ta được: F(1) = a.12 + b.1 + c F(1) = a + b + c F(1) = 0. Ta có F(x) = 0 tại x = 1 nên x = 1 là một nghiệm của F(x)
a) Biến cố “ Chọn được số chia hết cho 5” là biến cố không thể ( do trong các số đã cho không có số nào chia hết cho 5) nên xác suất chọn được số chia hết cho 5 là 0.
b) Biến cố: “ Chọn được số có hai chữ số” là biến cố chắc chắn ( do tất cả các số đã cho đều là số có 2 chữ số) nên xác suất chọn được số có hai chữ số là 1.
c) Xét 2 biến cố: “ Chọn được số nguyên tố” và “ Chọn được hợp số”
2 biến cố này là 2 biến cố đồng khả năng (đều có 2 khả năng) và luôn xảy ra 1 trong 2 biến cố đó
Xác suất của mỗi biến cố đó là \(\dfrac{1}{2}\)
Vậy xác suất để chọn được số nguyên tố là \(\dfrac{1}{2}\)
d) Trong 4 số trên chỉ có số 12 là số chia hết cho 6.
Xét 4 biến cố: “Chọn được số 11”; “Chọn được số 12”; “Chọn được số 13”; “Chọn được số 14”
4 biến cố này là 4 biến cố đồng khả năng (đều có 2 khả năng) và luôn xảy ra 1 trong 4 biến cố đó
Xác suất của mỗi biến cố đó là \(\dfrac{1}{4}\)
\(a,Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\\ =\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2+\left(3x-3x\right)+1\\ =3x^4+2x^2+1\\ b,Q\left(x\right)=0\\ \Leftrightarrow3x^4+2x^2+1=0\\ \Delta=b^2-4ac=2^2-4.3.1=-8< 0\)
Vậy Q(x) không có nghiệm
Các thẻ mang số nguyên tố là các thẻ có số 2;3;5;7
\(n_{\Omega}=10\)
A: "Các thẻ có mang số trên thẻ là số nguyên tố"
\(\rightarrow n_A=4\\ \Rightarrow P_A=\dfrac{n_A}{n_{\Omega}}=\dfrac{4}{10}=\dfrac{2}{5}\)
F(\(x\)) = - 2\(x\)3 + 7 - 6\(x\) + 5\(x^4\) - 2\(x^3\)
F(\(x\)) = (-2\(x^3\) - 2\(x^3\)) + 7 - 6\(x\) + 5\(x^4\)
F(\(x\)) = -4\(x^3\) + 7 - 6\(x\) + 5\(x^4\)
F(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7
G(\(x\)) = 5\(x^2\) + 9\(x\) - 2\(x^4\) - \(x^2\) + 4\(x^3\) - 12
G(\(x\)) = (5\(x^2\) - \(x^2\)) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12
G(\(x\)) = 4\(x^2\) + 9\(x\) - 2\(x^4\) + 4\(x^3\) - 12
G(\(x\)) = -2\(x^4\) + 4\(x^3\) +4\(x^2\) + 9\(x\) - 12
b, F(\(x\)) + G(\(x\)) = 5\(x^4\) - 4\(x^3\) - 6\(x\) + 7 + ( -2\(x^4\) + 4\(x^3\)+4\(x^2\)+9\(x\)-12)
F(\(x\)) + G(\(x\)) = 5\(x^4\)- 4\(x^3\) - 6\(x\)+ 7 - 2\(x^4\) + 4\(x^3\) + 4\(x^2\) + 9\(x\) - 12
F(\(x\)) + G(\(x\)) = (5\(x^{4^{ }}\) -2\(x^4\)) -(4\(x^3\) - 4\(x^3\)) + 4\(x^2\) + (9\(x\)-6\(x\)) - ( 12 - 7)
F(\(x\)) + G(\(x\)) = 3\(x^4\) + 4\(x^2\) + 3\(x\) - 5