Cho tam giác abc cân tại a (a <90 độ), có đường phân giác ah (h thuộc bc). từ h vẽ hk vuông góc ab và hi vuông góc ac (k thuộc ab, i thuộc ac)
a. chứng minh tam giác abh = tam giác ach
b. chứng minh bk=ci
c. kéo dài hk cắt ac tại m, kéo dài hi cắt ab tại n. chứng minh 1/2(km+ni)
a, Xét tam giác ABH và tam giác ACH có:
góc ABH = góc ACH ( tam giác ABC cân tại A)
AH chung
góc BAH = góc CAH ( đường phân giác AH)
=> tam giác ABH = tam giác ACH(g.c.g)
b,Xét tam giác AKH và tam giác AIH có:
góc KAH = góc IAH (đường phân giác AH)
AH chung
góc HKA = góc HIA = 90 độ
=> tam giác AKH = tam giác AIH(g.c.g)
=> HK = HI ( 2 cạnh tương ứng )
Vì AH là đường phân giác trong tam giác ABC cân tại A
=> AH là đường cao của tam giác ABC => AH vuông với BC
=> AH là đường trung tuyến của tam giác ABC=>BH=CH
Xét tam giác BHK và tam giác CHI có:
góc HBK = góc HCI ( tam giác ABC cân tại A)
KH = IH( chứng minh trên )
góc BKH = góc CIH = 90 độ
=>tam giác BHK = tam giác CHI(g.c.g)
=>BK=CI(2 cạnh tương ứng)
c,chứng minh j kia bạn
c là chứng minh 1/2(KM+NI)<AM