K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi thời gian làm riêng hoàn thành khu vườn của lớp 9B là x(giờ)

(Điều kiện: x>0)

Thời gian làm riêng hoàn thành khu vườn của lớp 9A là:

x+7(giờ)

Trong 1 giờ, lớp 9A làm được: \(\dfrac{1}{x+7}\)(khu vườn)

Trong 1 giờ, lớp 9B làm được: \(\dfrac{1}{x}\)(khu vườn)

Trong 1 giờ, hai lớp làm được: \(\dfrac{1}{12}\)(khu vườn)

Do đó, ta có:

\(\dfrac{1}{x}+\dfrac{1}{x+7}=\dfrac{1}{12}\)

=>\(\dfrac{2x+7}{x^2+7x}=\dfrac{1}{12}\)

=>\(x^2+7x=12\left(2x+7\right)\)

=>\(x^2-17x-84=0\)

=>(x-21)(x+4)=0

=>\(\left[{}\begin{matrix}x=21\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)

Vậy: thời gian làm riêng hoàn thành khu vườn của lớp 9B là 21(giờ)

thời gian làm riêng hoàn thành khu vườn của lớp 9A là 21+7=28(giờ)

Lời giải:

Cho tam giác ABC có ba đường phân giác AD, BE, CF đồng quy tại I

Vì BI là phân giác của góc ABC nên ���^=���^=���^2.

Vì CI là phân giác của góc ACB nên ���^=���^=���^2.

Vì AI là phân giác của góc ACB nên ���^=���^=���^2.

Ta có: ���^+���^=180° (hai góc kề bù).

Do đó ���^=180°−���^ (1)

Trong ∆AIC có ���^+���^+���^=180° (tổng ba góc trong một tam giác).

Suy ra ���^+���^=180°−���^ (2)

Từ (1) và (2) ta có:

Nên ���^=���^+���^=���^+���^2.

Trong ∆CAB ta có: ���^+���^+���^=180° (tổng ba góc trong một tam giác)

Nên ���^+���^=180°−���^

Suy ra

���^=���^+���^2=180°−���^2=90°−���^2 (3)

Vì tam giác BIH vuông tại H nên ���^+���^=90°.

Suy ra ���^=90°−���^=90°−���^2 (4)

Từ (3) và (4) suy ra ���^=���^.

Vậy ���^=���^.

Trong một giải đấu cờ vua có 5 vận động viên thi đấu vòng tròn một lượt; nghĩa là mỗi vận động viên đấu với 4 vận động viên còn lại mỗi người một trận. Với cách tính điểm của mỗi trận đấu là: vận động viên thắng thì được 1 điểm, vận động viên hoà thì được 0,5 điểm, vận động viên thua thì không có điểm. Biết rằng, sau khi kết thúc giải đấu mỗi vận động viên đều nhận được...
Đọc tiếp

Trong một giải đấu cờ vua có 5 vận động viên thi đấu vòng tròn một lượt; nghĩa là mỗi vận động viên đấu với 4 vận động viên còn lại mỗi người một trận. Với cách tính điểm của mỗi trận đấu là: vận động viên thắng thì được 1 điểm, vận động viên hoà thì được 0,5 điểm, vận động viên thua thì không có điểm. Biết rằng, sau khi kết thúc giải đấu mỗi vận động viên đều nhận được điểm số khác nhau và được xếp hạng từ cao đến thấp là nhất, nhì, đến ba, tư, năm dựa vào số điểm 

đạt được (số điểm đạt được càng nhiều thì thứ hạng càng cao). Ngoài ra:

-        Vận động viên xếp hạng nhất không hoà trận nào.

-        Vận động viên xếp hạng nhì không thua trận nào.

-        Vận động viên xếp hạng tư không thắng trận nào.

        a)   Giải đấu đã tổ chức tất cả bao nhiêu trận đấu? Vận động xếp viên hạng nhất được bao nhiêu điểm?

          b)       Em hãy xác định điểm số của mỗi vận động viên còn lại (vận động viên xếp hạng nhì, hạng ba, hạng tư, hạng năm) và chi tiết kết quả các trận đấu của từng vận động viên.

0
AH
Akai Haruma
Giáo viên
27 tháng 5

Bạn xem lại đề. Kết quả ra $m$ khá xấu, không phù hợp với bài toán PT bậc 2 cơ bản.

a) Khi m = -1, đường thẳng (d) trở thành y = -x + 7. Giao điểm của (P) và (d) là điểm A và B, khi giải hệ phương trình x^2 = -x + 7, ta có x = 1 và x = -2. Ta thấy điểm A có tọa độ (1, 2) và điểm B có tọa độ (-2, 9). Diện tích tam giác OAB được tính bằng công thức sau: S = 0.5 * |x1y2 + x2y3 + x3y1 - y1x2 - y2x3 - y3x1|, trong đó O(0,0), A(1,2), B(-2,9). Thay vào công thức ta có: S = 0.5 * |1*9 + (-2)*0 + 0*2 - 2*(-2) - 9*1 - 1*0| = 0.5 * |9...
Đọc tiếp

a) Khi m = -1, đường thẳng (d) trở thành y = -x + 7. Giao điểm của (P) và (d) là điểm A và B, khi giải hệ phương trình x^2 = -x + 7, ta có x = 1 và x = -2. Ta thấy điểm A có tọa độ (1, 2) và điểm B có tọa độ (-2, 9). Diện tích tam giác OAB được tính bằng công thức sau: S = 0.5 * |x1y2 + x2y3 + x3y1 - y1x2 - y2x3 - y3x1|, trong đó O(0,0), A(1,2), B(-2,9). Thay vào công thức ta có: S = 0.5 * |1*9 + (-2)*0 + 0*2 - 2*(-2) - 9*1 - 1*0| = 0.5 * |9 + 4 + 0 + 4 - 9 - 0| = 0.5 * 8 = 4. Vậy diện tích tam giác OAB là 4. b) Để (d) cắt (P) tại hai điểm phân biệt sao cho y1 và y2 là các số chính phương, ta cần tìm m sao cho phương trình x^2 = mx + 7 có hai nghiệm phân biệt và y1, y2 là các số chính phương. Để y1, y2 là các số chính phương, ta cần điều kiện Δ = m^2 - 4*7 = m^2 - 28 là một số chính phương. Mặt khác, để phương trình có hai nghiệm phân biệt, ta cần Δ > 0. Nên m^2 - 28 > 0 => m < -√28 hoặc m > √28. Vậy m thỏa mãn là m < -√28 hoặc m > √28.

1
AH
Akai Haruma
Giáo viên
31 tháng 5

Bạn nên viết lại đề cho rõ ràng để mọi người đọc hiểu và hỗ trợ nhanh hơn nhé.

AH
Akai Haruma
Giáo viên
27 tháng 5

Lời giải:
\(P=\frac{x+7\sqrt{x}}{x+2\sqrt{x}}=\frac{x+2\sqrt{x}+5\sqrt{x}}{x+2\sqrt{x}}=1+\frac{5\sqrt{x}}{x+2\sqrt{x}}=1+\frac{5}{\sqrt{x}+2}\)

Với $x$ là số nguyên không âm, để $P$ nguyên thì $\sqrt{x}+2$ là ước của 5.

Mà $\sqrt{x}+2\geq 2$ với mọi $x$ nguyên không âm

$\Rightarrow \sqrt{x}+2=5$

$\Rightarrow \sqrt{x}=3$

$\Rightarrow x=9$ (tm)

\(\left\{{}\begin{matrix}8x-y=6\\x^2-y=-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8x-y-x^2+y=6+6\\8x-y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-8x=-12\\y=8x-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-8x+12=0\\y=8x-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x-2\right)\left(x-6\right)=0\\y=8x-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\in\left\{2;6\right\}\\y=8x-6\end{matrix}\right.\)

Khi x=2 thì \(y=8\cdot2-6=16-6=10\)
Khi x=6 thì \(y=8\cdot6-6=42\)

27 tháng 5

Thông thường thì hai nghiệm phải có quan hệ với nhau, sao biểu thức trong căn chỉ chứa \(x_1\) vậy em?