K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Chứng minh rằng tứ giác ACMO nội tiếp được trong một đường tròn.

Cho nửa đường tròn tâm O, đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E (khác với điểm A). (ảnh 1)

Vì AC là tiếp tuyến của (O) nên OA  AC =>  ���^ = 90�

Vì MC là tiếp tuyến của (O) nên OM  MC =>  ���^ = 90�

=> ���^ +���^ =180�.  Suy ra OACM là tứ giác nội tiếp

1: Xét tứ giác BMNC có \(\widehat{BMC}=\widehat{BNC}=90^0\)

nên BMNC là tứ giác nội tiếp

=>B,M,N,C cùng thuộc một đường tròn

2:

Kẻ tiếp tuyến Ax của (O)

=>Ax\(\perp\)OA tại A

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{ANM}\left(=180^0-\widehat{MNC}\right)\)

nên \(\widehat{xAC}=\widehat{ANM}\)

=>Ax//MN

=>OA\(\perp\)MN

 mà MN\(\perp\)NK

nên NK//OA

28 tháng 5

chi tiết với ạ

Điểm D ở đâu vậy bạn?

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CD là các đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)

nên HECF là tứ giác nội tiếp

=>\(\widehat{HEF}=\widehat{HCF}\)

b: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

nên ADHE là tứ giác nội tiếp

=>\(\widehat{DEH}=\widehat{DAH}\)

mà \(\widehat{HEF}=\widehat{HCF}\)

và \(\widehat{DAH}=\widehat{HCF}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{DEB}=\widehat{FEB}\)

=>EB là phân giác của góc DEF

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{4}{5y}=7\\\dfrac{3}{4x}-\dfrac{2}{5y}=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{4}{5y}=7\\\dfrac{6}{4x}-\dfrac{4}{5y}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{6}{4x}=7+6\\\dfrac{2}{3x}+\dfrac{4}{5y}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{3}{2x}=13\\\dfrac{2}{3x}+\dfrac{4}{5y}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{x}\left(\dfrac{2}{3}+\dfrac{3}{2}\right)=13\\\dfrac{2}{3x}+\dfrac{4}{5y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}\cdot\dfrac{13}{6}=13\\\dfrac{2}{3x}+\dfrac{4}{5y}=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{x}=13:\dfrac{13}{6}=6\\\dfrac{2}{3x}+\dfrac{4}{5y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\\dfrac{4}{5y}=7-\dfrac{2}{3x}=7-\dfrac{2}{3\cdot\dfrac{1}{6}}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{6}\\\dfrac{4}{5y}=7-\dfrac{2}{\dfrac{1}{2}}=7-2\cdot2=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{6}\\5y=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=\dfrac{4}{15}\end{matrix}\right.\left(nhận\right)\)

28 tháng 5

M = x + 2 - √(x² - 2x + 1)

= x + 2 - √(x - 1)²

= x + 2 - |x - 1| (1)

Với x ≥ 1, ta có:

(1) = x + 2 - x + 1

= 3

Với x < 1, ta có:

M = x + 2 - 1 + x 

= 2x + 1

AH
Akai Haruma
Giáo viên
28 tháng 5

Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.

a: Để hàm số y=(m-2)x+m+3 đồng biến thì m-2>0

=>m>2

b: Để đồ thị hàm số y=(m-2)x+m+3 song song với đường thẳng y=2x+7 thì 

\(\left\{{}\begin{matrix}m-2=2\\m+3\ne7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=4\\m\ne4\end{matrix}\right.\)

=>\(m\in\varnothing\)

Hàm số y = (m + 2)x + 3 là hàm số bậc nhất khi m + 2 ≠ 0, hay m ≠ – 2.

Vậy ta có điều kiện m ≠ – 2.

a) Đồ thị hàm số đã cho song song với đường thẳng y = –x khi m + 2 = –1, tức là m = –3.

Giá trị này thỏa mãn điều kiện m ≠ – 2.

Vậy giá trị m cần tìm là m = –3.

b) Với m = –3 ta có hàm số y = –x + 3.

Đồ thị hàm số y = –x + 3 là đường thẳng đi qua hai điểm (0; 3) và (3; 0).