giải các pt sau :
a) cos (x - 15 độ) = căn 2/2
b) cos( 2x + pi/3) + cos ( x - pi/ 3) =0
c) sin ( 3x +1 ) = sin( x - 2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, d(B;SC) = d(B;(SAC))
Kẻ BH vuông AC
Ta có d(B;(SAC)) = BH
ADHT : \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{BC^2}=\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{2a^2}{a^4}=\dfrac{2}{a^2}\Rightarrow BH=\dfrac{a}{\sqrt{2}}\)
b,
Ta có AB vuông BC
SA vuông BC; AB; SA chứa (SAB)
=> BC vuông (SAB)
Kẻ AK vuông SB => AK là kc giứa (A;(SBC))
=> AK = a/ căn 2
c, Kẻ CD // AB
=> d(AB;SC) = d(AB;(SCD)) = d(A;(SCD))
Kẻ AM vuông CD; SA vuông CD
=> CD vuông (SAM)
Kẻ AG vuông SM => AG là khoảng cách
Xét tứ giác ABCM có AM// BC; AB//MC
=> tg ABCM là hbh => AM = BC = a
Xét tam giác SAM vuông tại A
ADHT \(\dfrac{1}{AG^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}\Rightarrow AG=\dfrac{a}{\sqrt{2}}\)
Ta giả sử
TH1 : Chỉ có B nói sai ,
Ta thấy B,D không thể cùng là người thấp nhất
=> Loại
TH2 : Chỉ có C nói sai
Khi đó , sẽ có 2 khả năng xảy ra: hoặc C và A là người cao nhất , hoặc C và D là người thấp nhất (vô lý)
=> Loại
TH3 : Chỉ có D nói sai
Khi đó D cao hơn B hoặc C , mặt khác lời của B và C trong TH này là đúng nên khi D nói sai ta không thể tìm được người thấp nhất
=> Loại
TH4 : Chỉ có A nói sai
Khi đó ta dễ thấy A cao hơn C và D , do A không là người cao nhất nên người cao nhất là B
Vậy chỉ có TH4 là thỏa mãn yêu cầu bài toán
=> D là người thấp nhất , A là người nói sai , Chiều cao 4 bạn chiều giảm dần là B,A,C,D
\(y=x^3-3x^2+2\)
=>\(y'=3x^2-6x\)
Phương trình tiếp tuyến sẽ có dạng là:
\(y-y_0=y'\left(x_0\right)\left(x-x_0\right)\)
Do đó, ta có: \(y'=9\)
=>\(3x^2-6x=9\)
=>\(x^2-2x=3\)
=>\(x^2-2x-3=0\)
=>(x-3)(x+1)=0
=>\(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
TH1: x=3
\(y\left(3\right)=3^3-3\cdot3^2+2=2\)
\(y'\left(3\right)=3\cdot3^2-6\cdot3=3\cdot9-18=27-18=9\)
Phương trình tiếp tuyến là:
y-2=9(x-3)
=>y-2=9x-27
=>y=9x-27+2=9x-25
TH2: x=-1
\(y\left(-1\right)=\left(-1\right)^3-3\cdot\left(-1\right)^2+1=-1-3+1=-3\)
Phương trình tiếp tuyến là:
y-(-3)=9(x+1)
=>y+3=9x+9
=>y=9x+6
Gọi \(\left(d'\right):x+2y-3=0\) \(\Rightarrow\) VTPT \(\overrightarrow{n_{d'}}=\left(1;2\right)\)
Gọi \(d\) là tiếp tuyến cần tìm \(\Rightarrow\) VTPT \(\overrightarrow{n_d}=\left(-2;1\right)\)
\(\Rightarrow\left(d\right):-2x+y+c=0\) \(\left(c\inℝ\right)\)
\(\Leftrightarrow y=2x-c\)
Có \(y'=4x^3-2x\). Khi đó cho \(y'\left(x_0\right)=4x_0^3-2x_0=2\)
\(\Leftrightarrow2x_0^3-x_0-1=0\)
\(\Leftrightarrow\left(x_0-1\right)\left(2x_0^2+2x_0+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_0=1\\2x_0^2+2x_0+1=0\left(vôlý\right)\end{matrix}\right.\)
Khi đó pttt cần tìm là \(\left(d\right):y=f'\left(x_0\right)\left(x-x_0\right)+f\left(x_0\right)\)
\(\Leftrightarrow y=f'\left(1\right)\left(x-1\right)+f\left(1\right)\)
\(\Leftrightarrow y=2\left(x-1\right)+3\)
\(\Leftrightarrow y=2x+1\)
\(y=x^4-x^2+3\Rightarrow y'=4x^3-2x\)
tung độ là 3 => \(y_0=3\Rightarrow3=x_0^4-x_0^2+3\)\(\Rightarrow x_0=0\)
\(y'\left(x_0\right)=0^4-0^2=3=3\)
=> phương trình tiếp tuyến: \(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)
=> y=3(x-0)+3=3x+3
a: \(cos\left(x-15^0\right)=\dfrac{\sqrt{2}}{2}\)
=>\(\left[{}\begin{matrix}x-15^0=45^0+k\cdot360^0\\x-15^0=-45^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=60^0+k\cdot360^0\\x=-30^0+k\cdot360^0\end{matrix}\right.\)
b: \(cos\left(2x+\dfrac{\Omega}{3}\right)+cos\left(x-\dfrac{\Omega}{3}\right)=0\)
=>\(cos\left(2x+\dfrac{\Omega}{3}\right)=-cos\left(x-\dfrac{\Omega}{3}\right)\)
=>\(cos\left(2x+\dfrac{\Omega}{3}\right)=cos\left(\Omega-x+\dfrac{\Omega}{3}\right)\)
=>\(cos\left(2x+\dfrac{\Omega}{3}\right)=cos\left(-x+\dfrac{4\Omega}{3}\right)\)
=>\(\left[{}\begin{matrix}2x+\dfrac{\Omega}{3}=-x+\dfrac{4\Omega}{3}+k2\Omega\\2x+\dfrac{\Omega}{3}=x-\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=\Omega+k2\Omega\\x=-\dfrac{5}{3}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{3}+\dfrac{k2\Omega}{3}\\x=-\dfrac{5}{3}\Omega+k2\Omega\end{matrix}\right.\)
c: \(sin\left(3x+1\right)=sin\left(x-2\right)\)
=>\(\left[{}\begin{matrix}3x+1=x-2+k2\Omega\\3x+1=\Omega-x+2+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-3+k2\Omega\\4x=1+\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{3}{2}+k\Omega\\x=\dfrac{1}{4}+\dfrac{\Omega}{4}+\dfrac{k\Omega}{2}\end{matrix}\right.\)