Cho x, y không âm thỏa mãn x2 + y2 = 2
Tìm GTNN của P = x + 3y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Khi m=-1 thì (d): \(y=2x+\left(-1\right)+1=2x\)
Phương trình hoành độ giao điểm là:
\(x^2=2x\)
=>\(x^2-2x=0\)
=>(x-2)*x=0
=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Khi x=0 thì \(y=0^2=0\)
Khi x=2 thì \(y=2^2=4\)
Vậy: (P) giao (d) tại A(0;0); B(2;4)
b: Phương trình hoành độ giao điểm là:
\(x^2=2x+m+1\)
=>\(x^2-2x-m-1=0\)
\(\Delta=\left(-2\right)^2-4\cdot1\left(-m-1\right)\)
\(=4+4m+4=4m+8\)
Để (P) cắt (d) tại hai điểm phân biệt thì \(\Delta>0\)
=>4m+8>0
=>m>-2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=-m-1\end{matrix}\right.\)
Đặt \(A=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{2}{-m-1}=\dfrac{-2}{m+1}\)
Để A là số nguyên thì \(-2⋮m+1\)
=>\(m+1\in\left\{1;-1;2;-2\right\}\)
=>\(m\in\left\{0;-2;1;-3\right\}\)
mà m>-2
nên \(m\in\left\{0;1\right\}\)
\(x=\sqrt[3]{a^3+a+\dfrac{1}{3}\sqrt{27a^4+6a^2+\dfrac{1}{3}}}+\sqrt[3]{a^3+a-\dfrac{1}{3}\sqrt{27a^4+6a^2+\dfrac{1}{3}}}\)
\(=\sqrt[3]{a^3+a+\dfrac{1}{3}\cdot\sqrt{\left(3\sqrt{3}a^2\right)^2+2\cdot3\sqrt{3}\cdot a^2\cdot\dfrac{1}{\sqrt{3}}+\left(\dfrac{1}{\sqrt{3}}\right)^2}}+\sqrt[3]{a^3+a-\dfrac{1}{3}\cdot\sqrt{\left(3\sqrt{3}a^2\right)^2+2\cdot3\sqrt{3}\cdot a^2\cdot\dfrac{1}{\sqrt{3}}+\left(\dfrac{1}{\sqrt{3}}\right)^2}}\)
\(=\sqrt[3]{a^3+a+\dfrac{1}{3}\sqrt{\left(3\sqrt{3}a^2+\dfrac{1}{\sqrt{3}}\right)^2}}+\sqrt[3]{a^3+a-\dfrac{1}{3}\sqrt{\left(3\sqrt{3}a^2+\dfrac{1}{\sqrt{3}}\right)^2}}\)
\(=\sqrt[3]{a^3+a+\dfrac{1}{3}\left(3\sqrt{3}a^2+\dfrac{1}{\sqrt{3}}\right)}+\sqrt[3]{a^3+a-\dfrac{1}{3}\left(3\sqrt{3}a^2+\dfrac{1}{\sqrt{3}}\right)}\)
\(=\sqrt[3]{a^3+a+\sqrt{3}a^2+\dfrac{1}{3\sqrt{3}}}+\sqrt[3]{a^3+a-\sqrt{3}a^2-\dfrac{1}{3\sqrt{3}}}\)
\(=\sqrt[3]{a^3+3\cdot a^2\cdot\dfrac{1}{\sqrt{3}}+3\cdot a\cdot\dfrac{1}{3}+\left(\dfrac{1}{\sqrt{3}}\right)^3}+\sqrt[3]{a^3-3\cdot a^2\cdot\dfrac{1}{\sqrt{3}}+3\cdot a\cdot\dfrac{1}{3}-\left(\dfrac{1}{\sqrt{3}}\right)^3}\)
\(=\sqrt[3]{\left(a+\dfrac{1}{\sqrt{3}}\right)^3}+\sqrt[3]{\left(a-\dfrac{1}{\sqrt{3}}\right)^3}\)
\(=a+\dfrac{1}{\sqrt{3}}+a-\dfrac{1}{\sqrt{3}}=2a\)
Áp dụng bất đẳng thức Cô-si cho hai số dương ta có:
Tương tự ta cũng có:
Lại có:
Tương tự
Suy ra
Vậy giá trị nhỏ nhất của P = khi x = y = z = 1.
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2acbd+a^2d^2+b^2c^2-2adbc\)
\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)
b: \(x^2+y^2=\dfrac{1}{2}\left(2x^2+2y^2\right)\)
\(=\dfrac{1}{2}\left(x^2+2xy+y^2+x^2-2xy+y^2\right)\)
\(=\dfrac{1}{2}\left[\left(x+y\right)^2+\left(x-y\right)^2\right]=\dfrac{1}{2}\left[4+\left(x-y\right)^2\right]>=\dfrac{1}{2}\cdot4=2\)
Dấu '=' xảy ra khi x=y=1
1: Thay x=2 vào phương trình, ta được:
\(2^2-2\left(m-2\right)\cdot2+m^2-8=0\)
=>\(4-4\left(m-2\right)+m^2-8=0\)
=>\(4-4m+8+m^2-8=0\)
=>\(m^2-4m+4=0\)
=>\(\left(m-2\right)^2=0\)
=>m-2=0
=>m=2
Lời giải:
a.
Vì $BE, CF$ là đường cao của tam giác $ABC$ nên $\widehat{BFC}=\widehat{BEC}=90^0$
Tứ giác $BCEF$ có $\widehat{BFC}=\widehat{BEC}$ và cùng nhìn cạnh $BC$ nên $BCEF$ là tứ giác nội tiếp.
b.
Xét tam giác $BFH$ và $CFA$ có:
$\widehat{BFH}=\widehat{CFA}=90^0$
$\widehat{FBH}=\widehat{FBE}=\widehat{FCE}=\widehat{FCA}$ (do $BCEF$ là tgnt)
$\Rightarrow \triangle BFH\sim \triangle CFA$ (g.g)
$\Rightarrow \frac{BF}{CF}=\frac{BH}{CA}$
$\Rightarrow BF.CA=BH.CF$
c.
Kéo dài $AO$ cắt $(O)$ tại $M$ thì $O$ là trung điểm $AM$.
$K$ là trung điểm $BC$ nên $OK\perp BC$, AH\perp BC$ (do $H$ là trực tâm)
$\Rightarrow OK\parallel AH$
Có: $\widehat{ABM}=\widehat{ACM}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow AB\perp BM, AC\perp CM$
Mà $CH\perp AB, BH\perp AC$ nên $BM\parallel CH, CM\parallel BH$
$\Rightarrow BHCM$ là hình bình hành (tứ giác có 2 cặp cạnh đối song song)
$\Rightarrow HM, BC$ cắt nhau tại trung điểm $K$ của $BC$
$\Rightarrow H,K,M$ thẳng hàng.
Tam giác $AHM$, áp dụng định lý Talet có:
$\frac{OK}{AH}=\frac{OM}{AM}=\frac{1}{2}$
Lời giải:
Xét tứ giác $BFEC$ có: $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.
Kẻ tiếp tuyến $Ax$ của $(O)$. Theo tính chất tiếp tuyến thì $Ax\perp OA(1)$
Lại có:
Tứ giác $BFEC$ nội tiếp.
$\Rightarrow \widehat{BCE}=\widehat{AFE}$
Mà $\widehat{BCE}=\widehat{BCA}=\widehat{xAB}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó - cụ thể ở đây là cung $AB$)
$\Rightarrow \widehat{AFE}=\widehat{xAB}$
Mà 2 góc này ở vị trí so le trong nên $Ax\parallel EF(2)$
Từ $(1); (2)\Rightarrow EF\perp OA$
Ta có:
\(x^2+y^2=2\)
\(\Rightarrow0\le x\le\sqrt{2}\)
\(0\le y\le\sqrt{2}\)(1)
Lại có:
\(P=x+3y\)
\(\Rightarrow3y\ge0\) (1)
Để P nhỏ nhất thì x hoặc 3y đạt giá trị nhỏ nhất vì x và 3y đều lớn hơn 0.
Xét trường hợp x nhỏ nhất:
\(x\ge0\) dấu bằng xảy ra \(\Leftrightarrow x=0\Rightarrow y=\sqrt{2}\)
\(\Rightarrow P=3\sqrt{2}\)
Xét trường hợp y nhỏ nhất.
\(y\ge0\) dấu bằng xảy ra \(\Leftrightarrow y=0\Rightarrow x=\sqrt{2}\)
\(\Rightarrow P=\sqrt{2}\)
Vậy giá trị nhỏ nhất của P tại \(\left(x,y\right)=\left(\sqrt{2},0\right)\)