cho a, b, c là các số thực dương. Chứng minh (a+b)/(bc+a^2) + (b+c)/(ac+b^2) + (c+a)/(ab+c^2) <=1/a+1/b+1/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
viết biểu thức sau dưới dạng tích
m^2-n^2
=(m-n)(m+n)
Hang dang thuc so 3
1, \(^{x^3-2x^2+2x-13
}\)
\(=x.\left(x^2-2x+2\right)-13\)
\(=x.\left(x^2+2\right)-13\)
3,\(x^3-x^2-5x+12\)
\(=x.\left(x^2-x-5\right)+12\)
\(=x.\left(x-5\right)+12\)
mình chỉ giúp bạn được như vậy thôi mong bạn thông cảm chúc bạn học tốt
Ta có:\(\left(x-y+z\right)\left(x+y+z\right)=\left[\left(x+z\right)-y\right]\left[\left(x+z\right)+y\right]\)
\(=\left(x+z\right)^2-y^2=x^2-2xz+z^2-y^2\)
Xong rồi đấy,chúc bạn học tốt
Ta có; n5-n=n(n4-1)
=n(n2-1)(n2-4+5)
=n(n-1)(n+1)(n2-4)+5n(n-1)(n+1)
=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1)
Vì n(n-1)(n+1) là tích 3 số tự nhiên liên tiếp nên n(n-1)(n+1) chia hết cho 2 và 3 (1) => 5n(n-1)(n+1) chia hết cho 30 (2)
CÓ: n(n-1)(n+1)(n-2)(n+2) là tích 5 số tự nhiên liên tiếp nên n(n-1)(n+1)(n-2)(n+2) chia hết cho 5
Mà n(n-1)(n+1) chia hết cho 2 và 3 => n(n-1)(n+1)(n-2)(n+2) chia hết cho 30 (3)
Từ (1),(2),(3) => n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1) chia hết cho 30 hay n5-n chia hết cho 30 (đpcm)