giúp tui vs đaggggggggg gấp lắm ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




-4x+7y+13=0 chuyển thành 4x-7y=13
5x+3y=7 nhân hai vế với 4 ta có 20x+12y=28
3x-5y+4x-7y=13+1=14
7x-12y=14
20x+12y+7x-12y=42
27x=42
x=42/27 ( loại vì x là số nguyên )
vậy ko có x,y nào thoả mãn
(nếu mình sai thì cho mình xin lỗi nha)

`[6.(-1/3)^3 -3.(-1/3)+1]:(-1/3-1)`
`= [6.((-1)^3)/(3^3)-(-3/3)+1]:(-1/3-3/3)`
`= [6. (-1/27) + 1+1]:(-4/3)`
`= [(-6/27) + (1+1)] . (-3/4)`
`= [-2/9 + 2] . (-3/4)`
`= [-2/9 + 18/9] . (-3/4)`
`= 16/9 . (-3/4)`
`= -4/3`
\(\left[6\left(-\dfrac{1}{3}\right)^3-3\cdot\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)
\(=\left[6\cdot\dfrac{-1}{27}+1+1\right]:\dfrac{-4}{3}\)
\(=\left(-\dfrac{2}{9}+2\right):\dfrac{-4}{3}=\dfrac{16}{9}\cdot\dfrac{3}{-4}=\dfrac{-48}{36}=-\dfrac{4}{3}\)

Bài giải
a. Số tiền cả gốc và lãi của mẹ bạn Long rút ra khi hết kì hạn 1 năm là:
( 30000 x 5.3 : 100 ) + 30000 = 31590 ( triệu đồng )
b. Giá của chiếc xe đạp có số tiền là :
31590 x 5 : 90 = 1755 ( triệu đồng )
Đáp số : a là 31590 triệu đồng
b là 1755 triệu đồng
Cho mình hỏi tí bạn có sai đề không mà mẹ Long gửi ngận hàng 30000 triệu tức 30 ngàn tỉ dữ vậy =0 với lại vẫn còn nghỉ hè mà bạn kiểm tra cái gì dọ ?

M-N
=5x-5y-5(x-y)+2
=5(x-y)-5(x-y)+2
=2
=>Hiệu của M và N không phụ thuộc vào hai biến x,y

\(\dfrac{6^{13}-3\cdot6^{12}+3^{13}}{9^5\left(4^6+1\right)}\)
\(=\dfrac{2^{13}\cdot3^{13}-2^{12}\cdot3^{13}+3^{13}}{3^{10}\left(2^{12}+1\right)}\)
\(=\dfrac{3^{12}\left(2^{13}-2^{12}+1\right)}{3^{10}\left(2^{12}+1\right)}=\dfrac{3^2\cdot\left[2^{12}\left(2-1\right)+1\right]}{2^{12}+1}\)
\(=\dfrac{9\left(2^{12}+1\right)}{2^{12}+1}\)
=9

\(\left|x\right|=\left|y\right|\) và \(x>0;y< 0\)
\(\Rightarrow y=-x\)
\(\Rightarrow2x\pm x=x\)
Vậy \(2x+y=x\)
a: \(\left|5-\dfrac{2}{3}x\right|>=0\forall x;\left|\dfrac{2}{3}y-4\right|>=0\forall y\)
Do đó: \(\left|5-\dfrac{2}{3}x\right|+\left|\dfrac{2}{3}y-4\right|>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5-\dfrac{2}{3}x=0\\\dfrac{2}{3}y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5:\dfrac{2}{3}=\dfrac{15}{2}\\y=4:\dfrac{2}{3}=6\end{matrix}\right.\)
b: \(\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|>=0\forall x;\left|1,5-\dfrac{3}{4}-\dfrac{3}{2}y\right|>=0\forall y\)
Do đó: \(\left\{{}\begin{matrix}\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x=0\\1,5-\dfrac{3}{4}-\dfrac{3}{2}y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{4}x=-\dfrac{2}{3}+\dfrac{1}{2}=-\dfrac{1}{6}\\\dfrac{3}{2}y=1,5-\dfrac{3}{4}=\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{6}:\dfrac{3}{4}=-\dfrac{1}{6}\cdot\dfrac{4}{3}=\dfrac{-4}{18}=-\dfrac{2}{9}\\y=\dfrac{1}{2}\end{matrix}\right.\)
c: \(\left|x-2020\right|>=0\forall x;\left|y-2021\right|>=0\forall y\)
Do đó: \(\left|x-2020\right|+\left|y-2021\right|>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2020=0\\y-2021=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2020\\y=2021\end{matrix}\right.\)
d: \(\left|x-y\right|>=0\forall x,y\)
\(\left|y+\dfrac{21}{10}\right|>=0\forall y\)
Do đó: \(\left|x-y\right|+\left|y+\dfrac{21}{10}\right|>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{21}{10}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{21}{10}\)