Vẽ hình, ghi giải thích, kết luận và chứng minh các định lý sau
Cho góc AOB, góc AOC kề bù,Ox,Oy lần lượt là các tia phân giác góc AOB, góc AOC. Chứng minh ox vuông góc với oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Để A là phân số
\(\Rightarrow x+7\ne0\)
\(\Rightarrow x\ne7\)
b.
Để P nguyên \(\Rightarrow-\dfrac{3}{x+7}\) là số nguyên
\(\Rightarrow3\) chia hết `x+7`
\(\Rightarrow x+7\) là ước của 3
\(\Rightarrow x+7=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x=\left\{-10;-8;-6;-4\right\}\)
c.
\(P=-\dfrac{2}{3}\Rightarrow-\dfrac{3}{x+7}=-\dfrac{2}{3}\)
\(\Rightarrow\left(-3\right).\left(-3\right)=2.\left(x+7\right)\)
\(\Rightarrow9=2x+14\)
\(\Rightarrow2x=-5\)
\(\Rightarrow x=-\dfrac{5}{2}\)
\(2x\left(x-\dfrac{1}{7}\right)=0\)
\(2x=0\) hoặc \(x-\dfrac{1}{7}=0\)
\(x=0\) hoặc \(x=\dfrac{1}{7}\)
Ta có:
+)
\(\dfrac{2023.2024-1}{2023.2024}\\ =\dfrac{2023.2024}{2023.2024}-\dfrac{1}{2023.2024}\\ =1-\dfrac{1}{2023.2024}\)
+)
\(\dfrac{2022.2023-1}{2022.2023}\\ =\dfrac{2022.2023}{2022.2023}-\dfrac{1}{2022.2023}\\ =1-\dfrac{1}{2022.2023}\)
Nhận xét:
Vì \(2023.2024>2022.2023\) nên:
\(\dfrac{1}{2023.2024}< \dfrac{1}{2022.2023}\\\Rightarrow1-\dfrac{1}{2023.2024}>1-\dfrac{1}{2022.2023}\)
hay \(\dfrac{2023.2024-1}{2023.2024}>\dfrac{2022.2023-1}{2022.2023}\)
Vậy...
\(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{32}\right)^{16}\\ =>\left[\left(\dfrac{1}{2}\right)^4\right]^x=\left[\left(\dfrac{1}{2}\right)^5\right]^{16}\\ =>\left(\dfrac{1}{2}\right)^{4\cdot x}=\left(\dfrac{1}{2}\right)^{5\cdot16}\\ =>\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{80}\\ =>4x=80\\ =>x=\dfrac{80}{4}\\ =>x=20\)
Vậy: ..
6B:
a: Các cặp góc đối đỉnh là: \(\widehat{cMb};\widehat{aMd}\); \(\widehat{aMc};\widehat{bMd}\)
b:
Cách 1: \(\widehat{aMc}+\widehat{cMb}=180^0\)(hai góc kề bù)
=>\(\widehat{aMc}=180^0-50^0=130^0\)
Ta có: \(\widehat{aMc}+\widehat{aMd}=180^0\)(hai góc kề bù)
=>\(\widehat{aMd}=180^0-130^0=50^0\)
Cách 2:
Ta có: \(\widehat{aMd}=\widehat{cMb}\)(hai góc đối đỉnh)
mà \(\widehat{cMb}=50^0\)
nên \(\widehat{aMd}=50^0\)
Ta có: \(\widehat{aMd}+\widehat{aMc}=180^0\)(hai góc kề bù)
=>\(\widehat{aMc}+50^0=180^0\)
=>\(\widehat{aMc}=130^0\)
7A:
a: Oz là phân giác của góc xOy
=>\(\widehat{xOz}=\widehat{zOy}=\dfrac{\widehat{xOy}}{2}=35^0\)
b: Ta có: \(\widehat{xOy}+\widehat{xOt}=180^0\)(hai góc kề bù)
=>\(\widehat{xOt}+70^0=180^0\)
=>\(\widehat{xOt}=110^0\)
Ta có: \(\widehat{zOt}+\widehat{zOy}=180^0\)(hai góc kề bù)
=>\(\widehat{zOt}+35^0=180^0\)
=>\(\widehat{zOt}=145^0\)
Thể tích nước buổi sáng bơm vào là:
\(2\cdot1,6\cdot1,5\cdot80\%=3,2\cdot1,2=3,84\left(m^3\right)=3840\left(lít\right)\)
Lượng nước còn lại sau khi dùng là:
\(3840\left(1-80\%\right)=768\left(lít\right)\)
2m=20dm; 1,6m=16dm; 1,5m=15dm
Thể tích tối đa của bể là: \(20\cdot16\cdot15=300\cdot16=4800\left(lít\right)\)
Lượng nước cần bơm vào là:
4800-768=4032(lít)
Đề sai rồi á bạn, mình nghĩ là phải chia hết cho 120 hoặc 100 chứ biểu thức đó k chia hết cho 105 đâu
a: Oz là phân giác của góc xOy
=>\(\widehat{xOz}=\widehat{yOz}=\dfrac{\widehat{xOy}}{2}=\dfrac{80^0}{2}=40^0\)
\(\left(\dfrac{-4}{5}+\dfrac{-3}{2}:x\right)\cdot\dfrac{1}{3}-\dfrac{1}{2}=\dfrac{1}{2}\\ \left(\dfrac{-4}{5}+\dfrac{-3}{2}:x\right)\cdot\dfrac{1}{3}=\dfrac{1}{2}+\dfrac{1}{2}\\ \left(\dfrac{-4}{5}+\dfrac{-3}{2}\right):x\cdot\dfrac{1}{3}=1\\ \dfrac{-4}{5}+\dfrac{-3}{2}:x=1:\dfrac{1}{3}\\ -\dfrac{4}{5}+\dfrac{-3}{2}x=3\\ \dfrac{3}{2}x=\dfrac{-4}{5}-3\\ \dfrac{3}{2}x=-\dfrac{19}{5}\\ x=\dfrac{-19}{5}:\dfrac{3}{2}\\x =-\dfrac{38}{15}\)
Ox,Oy lần lượt là phân giác của góc AOB,góc AOC
Ox là phân giác của góc BOA
=>\(\widehat{xOA}=\dfrac{\widehat{BOA}}{2}\)
Oy là phân giác của góc COA
=>\(\widehat{yOA}=\dfrac{\widehat{COA}}{2}\)
\(\widehat{xOy}=\widehat{xOA}+\widehat{yOA}=\dfrac{1}{2}\left(\widehat{BOA}+\widehat{COA}\right)\)
\(=\dfrac{1}{2}\cdot180^0=90^0\)
=>Ox\(\perp\)Oy