cho a+b+c=0 va a^2+b^2+c^2=1 tinh a^4+b^4+c^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\dfrac{x}{18}\) = \(\dfrac{y}{15}\) = \(\dfrac{x-y}{18-15}\) = \(\dfrac{-6}{3}\) = -2
x = 18. (-2) = -36
y = 15 x (-2) = -30
x/18 = y/15 và x-y = -6
=> x/18 = y/15 => x-y/ 18-15 => -6 / 3 = -2
=> x = -2 . 18 = -36
=> y = -2 . 15 = -30

a) A\(=x^2+y^2+2x+15-6y\)
\(=x^2+y^2+2x+9+5+1-6y\)
\(=\left(x^2+2x+1\right)+\left(y^2-6y+9\right)+5\)
\(=\left(x+1\right)^2+\left(y-3\right)^2+5\)
Vì \(\left(x+1\right)^2\) luôn dương với mọi x
\(\left(y-3\right)^2\) luôn dương với mọi y
\(\Rightarrow\left(x+1\right)^2+\left(y-3\right)^2+5\) \(\ge5>0\)
Vậy biểu thức A luôn dương với mọi x, y
Câu b) bạn làm tương tự nha



\(1^2-2^2+3^2-4^2+...+999^2-1000^2\)
\(=\left(1-2\right)\left(1+2\right)+\left(1-2\right)\left(3+4\right)+...+\left(999-1000\right)\left(999+1000\right)\)
\(=-\left(1+2+3+4+...+999+1000\right)\)
\(=-\dfrac{\left(\dfrac{1000-1}{1}+1\right).\left(1000+1\right)}{2}=-500500\)


đk a ≠ 1 ; a ≥ 0
\(=\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1+\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{1-\sqrt{a}}\right)\\ =\left(1+\sqrt{a}\right)\left(1+\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\right)\\ =\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
Ta có \(\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow1+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}\)
-> \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-\dfrac{2.1}{4}=\dfrac{1}{2}\)
\(a+b+c=0\)
\(\left(a+b+c\right)^2=0\)
\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(2\left(ab+bc+ca\right)=-1\left(a^2+b^2+c^2=1\right)\)
\(ab+bc+ca=-\dfrac{1}{2}\)
\(\left(ab+bc+ca\right)=\dfrac{1}{4}\)
\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\dfrac{1}{4}\left(a+b+c=0\right)\)
+) \(a^2+b^2+c^2=1\)
\(\left(a^2+b^2+c^2\right)^2=1\)
\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(a^4+b^4+c^4=1-\dfrac{1}{2}=\dfrac{1}{2}\left(a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}\right)\)