Cho tam giác ABC. Gọi I là giao điểm của hai đường phân giác của góc
ABC và ACB. Chứng minh rằng góc BIC = 90 độ + A/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-2\right)^{2004}=\left(3x-2\right)^{2006}\)
=>\(\left(3x-2\right)^{2006}-\left(3x-2\right)^{2004}=0\)
=>\(\left(3x-2\right)^{2004}\left[\left(3x-2\right)^2-1\right]=0\)
=>\(\left(3x-2\right)^{2004}\cdot\left(3x-3\right)\left(3x-1\right)=0\)
=>\(\left[{}\begin{matrix}3x-2=0\\3x-3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(\left(3x-2\right)^{2004}=\left(3x-2\right)^{2006}\\ =>\left(3x-2\right)^{2006}-\left(3x-2\right)^{2004}=0\\ =>\left(3x-2\right)^{2004}\left[\left(3x-2\right)^2-1\right]=0\)
+) \(\left(3x-2\right)^{2004}=0=>3x-2=0=>x=\dfrac{2}{3}\)
+) \(\left(3x-2\right)^2-1=0=>\left(3x-2\right)^2=1^2\)
\(TH1:3x-2=1=>3x=1+2=3=>x=\dfrac{3}{3}=1\\ TH2:3x-2=-1=>3x=-1+2=1=>x=\dfrac{1}{3}\)
`A(x) + B(x) = 6x^4 - 3x^2 - 5`
`A(x) - B(x) = 4x^4 - 6x^3 + 7x^2 + 8x - 9`
Áp dụng bài toán tổng hiệu ta có:
`A(x) = [(6x^4 - 3x^2 - 5) + (4x^4 - 6x^3 + 7x^2 + 8x - 9)] : 2`
`= (6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9) : 2`
`= (10x^4 - 6x^3 + 4x^2 + 8x - 14) : 2`
`= 5x^4 - 3x^3 + 2x^2 + 4x - 7`
`B(x) = (6x^4 - 3x^2 - 5) - (5x^4 - 3x^3 + 2x^2 + 4x - 7)`
`= 6x^4 - 3x^2 - 5 - 5x^4 + 3x^3 - 2x^2 - 4x + 7`
`= x^4 + 3x^3 - 5x^2 - 4x + 2`
Vậy ....
\(2A\left(x\right)=\left(6x^4-3x^2-5\right)+\left(4x^4-6x^3+7x^2+8x-9\right)\\ =\left(6x^4+4x^4\right)-6x^3+\left(-3x^2+7x^2\right)+8x+\left(-5-9\right)\\ =10x^4-6x^3+4x^2+8x-14\\ =>A\left(x\right)=5x^4-3x^3+2x^2+4x-7\)
\(=>B\left(x\right)=\left(6x^4-3x^2-5\right)-A\left(x\right)\\ =\left(6x^4-3x^2-5\right)-\left(5x^4-3x^3+2x^2+4x-7\right)\\ =\left(6x^4-5x^4\right)+3x^3+\left(-3x^2-2x^2\right)-4x+\left(-5+7\right)\\ =x^4+3x^3-5x^2-4x+2\)
\(\dfrac{1}{3}\cdot x+\dfrac{2}{5}\cdot\left(x+1\right)=0\\ =>\dfrac{1}{3}\cdot x+\dfrac{2}{5}\cdot x+\dfrac{2}{5}=0\\ =>x\cdot\left(\dfrac{1}{3}+\dfrac{2}{5}\right)+\dfrac{2}{5}=0\\ =>x\cdot\dfrac{11}{15}+\dfrac{2}{5}=0\\ =>x\cdot\dfrac{11}{15}=-\dfrac{2}{5}\\ =>x=\dfrac{-2}{5}:\dfrac{11}{15}\\ =>x=\dfrac{-2}{5}\cdot\dfrac{15}{11}\\ =>x=\dfrac{-6}{11}\)
\(125^7:25^{16}\\ =\left(5^3\right)^7:\left(5^2\right)^{16}\\ =5^{3\cdot7}:5^{2\cdot16}\\ =5^{21}:5^{32}\\ =5^{21-32}\\ =5^{-11}\)
Ta có:
\(\dfrac{1}{2}< \dfrac{x}{10}< \dfrac{4}{5}\\ \Rightarrow\dfrac{5}{10}< \dfrac{x}{10}< \dfrac{8}{10}\\ \Rightarrow5< x< 8\)
Vì \(x\) nguyên nên:
\(x\in\left\{6,7\right\}\)
Vậy \(x\in\left\{6,7\right\}\)
Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
=>\(2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\widehat{BAC}\)
=>\(\widehat{IBC}+\widehat{ICB}=90^0-\dfrac{1}{2}\cdot\widehat{BAC}\)
Xét ΔBIC có \(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)
=>\(\widehat{BIC}+90^0-\dfrac{1}{2}\widehat{BAC}=180^0\)
=>\(\widehat{BIC}=180^0-90^0+\dfrac{1}{2}\cdot\widehat{BAC}=90^0+\dfrac{1}{2}\cdot\widehat{BAC}\)