Cho đường tròn tâm o đường kính AB , dây CD vuông góc với AB tại H .Trên BC lấy M (M khác B và C).Nối A với M cắt CD tại N.Gọi I là giao điêm của CB với AM ,K là gio điểm của MD với AB.
a)CMR:IK//CD
b)CM : I là tâm đường tròn nội tiếp tam giác CMI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề rồi bạn nha nếu thế thì dễ quá ,đề phải là 13-12+11+10-9+8-7-6+5-4+3+2-1
Ta có :
13-12+11+10-9+8-7-6+5-4+3+2-1
=1+11+10-9+8-7-6+5-4+3+2-1
=12+10-9+8-7-6+5-4+3+2-1
=22-9+8-7-6+ 5-4+3+2-1
=13+8-7-6+5-4+3+2-1
=21-7-6+5-4+3+2-1
=14-6+5-4+3+2-1
=8+5-4+3+2-1
=13-4+3+2-1
=9+3+2-1
=12+2-1
=14-1
=13
a) Xét tứ giác ABOC: ^ABO=^ACO=900 (Do AB và AC là 2 tiếp tuyến của (O))
=> Tứ giác ABOC nội tiếp đường tròn dường kính AO (1)
Ta có: DE là dây cung của (O), I là trung điểm DE => OI vuông góc DE => ^OIA=900
Xét tứ giác ABOI: ^ABO=^OIA=900 => Tứ giác ABOI nội tiếp đường tròn đường kính AO (2)
(1) + (2) => Ngũ giác ABOIC nội tiếp đường tròn
Hay 4 điểm B;O;I;C cùng thuộc 1 đường tròn (đpcm).
b) Gọi P là chân đường vuông góc từ D kẻ đến OB
Ta có: Tứ giác BOIC nội tiếp đường tròn => ^ICB=^IOP (Góc ngoài tại đỉnh đối) (3)
Dễ thấy tứ giác DIPO nội tiếp đường tròn đường kính OD
=> ^IOP=^IDP (=^IDK) (4)
(3) + (4) => ^ICB=^IDK (đpcm).
c) ^ICB=^IDK (cmt) => ^ICH=^IDH => Tứ giác DHIC nội tiếp đường tròn
=> ^DIH=^DCH hay ^DIH=^DCB.
Lại có: ^DCB=^DEB (2 góc nội tiếp cùng chắn cung BD) => ^DIH=^DEB
Mà 2 góc trên đồng vị => IH // EB hay IH // EK
Xét tam giác KDE: I là trung điểm DE (Dễ c/m); IH // EK; H thuộc DK
=> H là trung điểm DK (đpcm).
ta có \(x\sqrt{a+y}+y\sqrt{a+x}=\sqrt{x}\sqrt{ax+xy}+\sqrt{y}\sqrt{ay+xy}\)
<=\(\sqrt{\left(x+y\right)\left(ax+xy+ay+xy\right)}=\sqrt{b\left[a\left(x+y\right)+2xy\right]}=\sqrt{b.a.b+b2xy}\)
Mà \(2xy\le\frac{\left(x+y\right)^2}{2}=\frac{b}{2}\Rightarrow b.2xy\le\frac{b^2}{2}\)
=>...\(\le\sqrt{b^2a+\frac{b^2}{2}}=b\sqrt{a+\frac{1}{2}}\)
Dâu = xảy ra <=> x=y=b/2
^_^
Ta có: ab2+bc2+ca2=a2c+b2a+c2bab2+bc2+ca2=a2c+b2a+c2b
⇔a3c2+b3a2+c3b2=b3c+c3a+a3b
⇔a3c2+b3a2+c3b2=b3c+c3a+a3b ( Do a2b2c2=abc=1)
⇔ a3c2+b3a2+c3b2 -b3c-c3a-a3b+a2b2c2-abc=0( Do a2b2c2=abc=1)
⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0
⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0
Tự phân tích thành nhân tử nhá: ⇔(b2−a)(c2−b)(a2−c)=0⇔(b2−a)(c2−b)(a2−c)=0
Đến đây suy ra ĐPCM