K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2018

Giá trị của phân thức \(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\) được xác định với điều kiện ( x + 1 )( 2x - 6 )\(\ne\) 0

<=> 2( x + 1 )( x - 3 ) \(\ne\) 0

<=> x + 1 \(\ne\) 0 và x - 3 \(\ne\) 0

+, x + 1 \(\ne\) 0

<=> x \(\ne\) -1

+, x - 3 \(\ne\) 0

<=> x \(\ne\) 3

Vậy ĐKXĐ : x  \(\ne\) -1; 3

Ta có : \(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\) 

\(=\frac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}\) 

\(=\frac{3x}{2\left(x-3\right)}\) 

Giá trị của biểu thức \(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\) bằng 1

\(\Leftrightarrow\frac{3x}{2\left(x-3\right)}=1\) 

\(\Rightarrow3x=2x-6\)  

\(\Rightarrow3x-2x=-6\)

 \(\Rightarrow x=-6\)

Vậy x = -6

15 tháng 12 2018

\(x^3-7x-6=0\)

\(x^3-3x^2+3x^2+2x-9x-6=0\)

\(x^2.\left(x-3\right)+3x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\left(x+3\right).\left(x^2+3x+2\right)=0\Rightarrow\left(x-3\right).\left(x^2+3x+x+2\right)=0\)

\(\Rightarrow\left(x-3\right).\left(x+1\right).\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\text{hoặc }x=-2\)

15 tháng 12 2018

giusp minh voi

15 tháng 12 2018

a, ĐỂ \(\frac{3x+3}{x^2-1}=\frac{3x+3}{\left(x+1\right)\left(x-1\right)}\)    Xác định 

\(\Rightarrow\left(x+1\right)\left(x-1\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-1\\x\ne1\end{cases}}}\)

KL : \(x\ne\pm1\)

b , 

15 tháng 12 2018

\(\frac{3x+3}{x^2-1}\)xác định 

\(\Leftrightarrow x^2-1\ne0\Leftrightarrow x\ne\pm1\)

Vậy điều kiện xác định của \(\frac{3x+3}{x^2-1}\)là \(x\ne\pm1\)

\(\frac{3x+3}{x^2-1}=-2\)

\(\Leftrightarrow\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=-2\)

\(\Leftrightarrow\frac{3}{x-1}=-2\)

\(\Leftrightarrow3=-2\left(x-1\right)\)

\(\Leftrightarrow\frac{-3}{2}=x-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(x=\frac{-1}{2}\)là giá trị cần tìm

14 tháng 12 2018

Bạn đã ib nhờ mik thì mik làm cho trót vại UwU

\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-x\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}.\)

\(=-\frac{1}{x\left(x-y\right)\left(z-x\right)}-\frac{1}{y\left(y-z\right)\left(x-y\right)}-\frac{1}{z\left(z-x\right)\left(y-z\right)}\)

\(=-\frac{y^2x-yz^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}-\frac{xz^2-x^2z}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}-\frac{x^2y-xy^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-y^2z+yz^2-xz^2+x^2z-x^2y+xy^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-\left(y^2z-x^2z\right)+\left(yz^2-xz^2\right)-\left(x^2y-xy^2\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-z\left(y^2-x^2\right)+z^2\left(y-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-z\left(y-x\right)\left(x+y\right)+z^2\left(y-x\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{\left(y-x\right)\left[-z\left(x+y\right)+x^2+xy\right]}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{\left(y-x\right)\left[-z\left(x+y\right)+x^2+xy\right]}{-xyz\left(y-x\right)\left(z-x\right)\left(y-z\right)}\)

\(=-\frac{-z\left(x+y\right)+z^2+xy}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=-\frac{-zx-zy+z^2+xy}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-\left(zx-xy\right)-\left(zy-z^2\right)}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-x\left(z-y\right)-z\left(y-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=\frac{x\left(y-z\right)-z\left(y-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(x-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=\frac{x-z}{xyz\left(z-x\right)}\)

\(=\frac{-\left(z-x\right)}{xyz\left(z-x\right)}\)

\(=\frac{-1}{xyz}\)