Tìm GTNN:
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3+x^2-4x-12=2x^3-4x^2+5x^2-10x+6x-12\)
\(=2x^2\left(x-2\right)+5x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+5x+3\right)\)
\(=\left(x-2\right)\left[2x\left(x+1\right)+3\left(x+1\right)\right]\)
\(=\left(x-2\right)\left(x+1\right)\left(2x+3\right)\)
Xin lỗi bạn, mình làm sai.
\(2x^3+x^2-4x-12=2x^2\left(x-2\right)+5x\left(x-2\right)+6\left(x-2\right)=\left(x-2\right)\left(2x^2+5x+6\right)\)
Cách làm là đây, bạn tự giải chi tiết
\(x^2-4x+1=\left(x-2\right)^2-3\ge-3\left(\forall x\right)\)
Dấu bằng xảy ra khi x=2
\(4x^2+4x+11=\left(2x+1\right)^2+10\ge10\left(\forall x\right)\)
Dấu bằng xảy ra khi x= -1/2
\(\text{Đặt }A=x^2-4x+1\)
\(=x^2-2.2x+2^2-3=\left(x-2\right)^2-3\ge-3\)
\(\text{Dấu bằng xảy ra khi: }x-2=0\)
\(\Rightarrow x=2.\text{Vậy min A=-3 khi x=2}\)
\(\text{Đặt }B=4x^2+4x+11\)
\(=\left(2x\right)^2+2.2x+1+10=\left(2x+1\right)^2+10\ge10\)
\(\text{Dấu bằng xảy ra khi: }2x+1=0\)
\(x=-\frac{1}{2}.Vay...\)
Ta có : \(\frac{3\left(x^2+x-3\right)}{x^2+x-2}+\frac{x+3}{x+2}-\frac{x-2}{x-1}\)
\(=\frac{3\left(x^2+x-3\right)+\left(x+3\right)\left(x-1\right)-\left(x-2\right)\left(x-2\right)}{x^2+x-2}\)
\(=\frac{3x^2+3x-9+x^2+2x-3-x^2+4x-4}{x^2+x-2}\)
\(=\frac{3x^2+9x-16}{x^2+x-2}\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(C=\left(x^2+5x\right)^2-36\)
Ta có: \(\left(x^2+5x\right)^2\ge0\forall x\)
\(\Rightarrow\left(x^2+5x\right)^2-36\ge-36\forall x\)
\(C=-36\Leftrightarrow\left(x^2+5x\right)^2=0\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy \(C_{min}=-36\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
C = ( x - 1 )( x + 3 )( x + 2 )( x + 6 )
C = [( x - 1 )( x + 6 )][( x + 3 )( x + 2 )]
C = ( x2 + 5x - 6 )( x2 + 5x + 6 )
Đặt a = x2 + 5x
=> C = ( a - 6 )( a + 6 ) = a2 - 36
\(a^2\ge0\forall a\Rightarrow a^2-36\ge-36\)
Dấu " = " xảy ra <=> a2 = 0 => a = 0
<=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5