Tìm a, b biết
4.(a-b) = axb =a:b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(^{\left(2x+1\right)^2-\left(x+2\right)^2-3x\left(x+2\right)=\left(2x+1\right)^2-\left(x+2\right)\left(x+2+3x\right)}\)
\(=\left(2x+1\right)^2-\left(x+2\right)\left(4x+2\right)=\left(2x+1\right)^2-2\left(x+2\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(1-2x-4\right)=\left(2x+1\right)\left(-3-2x\right)=-\left(2x+1\right)\left(3+2x\right)\)
\(\left(2x+1\right)^2-\left(x+2\right)^2-3x\left(x+2\right)\)
\(=4x^2+4x+1-\left(x^2+4x+4\right)-3x^2-6x\)
\(=4x^2+4x+1-x^2-4x-4-3x^2-6x\)
\(=-6x-3\)
\(=-3\left(x+2\right)\)
Đoạn 1 (Từ đầu … đến “đặt đâu thì nằm đấy”): Sự ra đời kì lạ của Gióng.
- Đoạn 2 (Tiếp theo … đến “giết giặc, cứu nước”): Gióng gặp sứ giả và sự lớn nhanh kì lạ của Gióng.
- Đoạn 3 (Tiếp theo … đến “từ từ bay lên trời”): Gióng cùng nhân dân chiến đấu và chiến thắng giặc Ân.
- Đoạn 4 (Còn lại): Gióng bay về trời
Ta có: \(\left(x-2\right)^{2x}+3=\left(x-2\right)^{2x}+1\)
\(\Leftrightarrow\left(x-2\right)^{2x}-\left(x-2\right)^{2x}=1-3\)
\(\Leftrightarrow0=-2\)
=> vô lý
PT vô nghiệm
\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)
2x - 3y + 4z = 5, 34
=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)
Vậy ...
b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)
\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)
\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)
Vậy ...
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(\frac{a+c}{b+d}=\frac{kb+kd}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)(1)
\(\frac{a-c}{b-d}=\frac{kb-kd}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)(2)
Từ (1) và (2) => đpcm
b) \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(kb+b\right)^2}{\left(kd+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{kb\cdot b}{kd\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) => đpcm
c) \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{kb+b}{kd+d}\right)^2=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\)(1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) => đpcm
Ta có: \(X=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
<=> \(X^2=6-3\sqrt{2+\sqrt{3}}+2+\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{4-\left(2+\sqrt{3}\right)}\)
<= \(X^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{2-\sqrt{3}}\)
<=> \(X^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{6}\left(\sqrt{3}-1\right)\)
<=> \(X^2=8-4\sqrt{2}\)
<=> \(X^2-8=-4\sqrt{2}\)
=> \(X^4-16X+64=32\)
<=> \(X^4-16X^2+32=0\)
Vậy X là nghiệm phương trình \(X^4-16X^2+32=0\)
a)\(G=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
\(=\frac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{2}{x+\sqrt{x}+1}\)
b) \(x+\sqrt{x}+1>0\Rightarrow G>0\)
\(x+\sqrt{x}+1>0+0+1=1\)
\(\Rightarrow\frac{2}{x+\sqrt{x}+1}< \frac{2}{1}=2\Rightarrow G< 2\)
\(\Rightarrow O< G< 2\)
\(a\cdot b=a:b\)
\(b\cdot b=a:a\)
\(b^2=1\)
\(b=\pm\sqrt{1}\)
\(b=\pm1\)
\(\orbr{\begin{cases}b=1\\b=-1\end{cases}}\)
TH 1 :
\(b=1\)
\(4\left(a-b\right)=a\cdot b\)
\(4\left(a-1\right)=a\cdot1\)
\(4a-4=a\)
\(3a=4\)
\(a=\frac{4}{3}\)
TH 2 :
\(b=-1\)
\(4\left(a-b\right)=a\cdot b\)
\(4\left(a-\left(-1\right)\right)=a\cdot\left(-1\right)\)
\(4\left(a+1\right)=-a\)
\(4a+4=-a\)
\(5a=-4\)
\(a=\frac{-4}{5}\)
Vậy \(\hept{\begin{cases}a=\frac{4}{3}\\b=1\end{cases}}\) hoặc \(\hept{\begin{cases}a=\frac{-4}{5}\\b=-1\end{cases}}\)
Bài giải
\(4\left(a-b\right)=ab=\frac{a}{b}\)
\(4a-4b=ab=\frac{a}{b}\)
Vì \(ab=\frac{a}{b}\text{ }\Rightarrow\text{ }ab^2=a\text{ }\Rightarrow\text{ }b^2=1\text{ }\Rightarrow\text{ }b=\pm1\)
TH 1 ; Với a = - 1 thì :
\(\Rightarrow\text{ }-4-4b=-b\text{ }\Rightarrow\text{ }-4=3b\text{ }\Rightarrow\text{ }b=-\frac{4}{3}\)
TH 2 : Với a = 1 thì :
\(\Rightarrow\text{ }4-4b=b\text{ }\Rightarrow\text{ }4=5b\text{ }\Rightarrow\text{ }b=\frac{4}{5}\)
Vậy ...