Bảo,Cường,Tùng có tất cả 48 viên bi.Nếu Bảo cho Cường số bi bằng số bi Cường hiện có,rồi Cường lại cho Tùng số bi Tùng hiện có, rồi Tùng lại cho Bảo số bi Bảo hiện có thì mỗi bạn có số bi bằng nhau.Hỏi lúc đầu mỗi bạn có bao nhiêu viên bi?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)
nên \(\widehat{B}\simeq53^0\)
\(\dfrac{5x^6y^7+4x^5y^6+3x^4y^5}{-x^3y^2}\)
\(=\dfrac{-5x^6y^7}{x^3y^2}-\dfrac{4x^5y^6}{x^3y^2}-\dfrac{3x^4y^5}{x^3y^2}\)
\(=-5x^3y^5-4x^2y^4-3xy^3\)
`a, 5^4 . 25^3 . 125^3`
`= 5^4 . (5^2)^3 . (5^3)^3`
`= 5^4 . 5^6 . 5^9`
`= 5^(4 + 6 + 9)`
`= 5^19`
`b, 3^21 : 81^2 : 27^4`
`= 3^21 : (3^4)^2 : (3^3)^4`
`= 3^21 : 3^8 : 3^12`
`= 3^(21-8-12)`
`= 3^1`
`=3`
Thời gian người đi xe máy từ nhà đến trường là:
`10` giờ `30` phút `-8` giờ `=2` giờ `30` phút `=2,5` giờ
Vận tốc của người đi xe máy là:
`v = S/t = 150/(2,5)=60 (km`/`h)`
Đáp số: `60 km`/`h`
a: \(P=\left(\dfrac{2\sqrt{xy}}{x-y}-\dfrac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}-2\sqrt{y}}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(=\left(\dfrac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{4\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}\right)^2}{2\cdot\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\dfrac{2\sqrt{x}}{\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\dfrac{-x+2\sqrt{xy}-y}{\left(\sqrt{x}-\sqrt{y}\right)^2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}=\dfrac{-\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)^2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
\(=-\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
b: \(\dfrac{x}{y}=\dfrac{4}{9}\)
=>\(\dfrac{x}{4}=\dfrac{y}{9}=k\)
=>x=4k; y=9k
\(P=\dfrac{-\sqrt{x}}{\sqrt{x}+\sqrt{y}}=\dfrac{-\sqrt{4k}}{\sqrt{4k}+\sqrt{9k}}=\dfrac{-2\sqrt{k}}{2\sqrt{k}+3\sqrt{k}}=-\dfrac{2}{5}\)
Em chọn vào biểu tượng \(\Sigma\) góc tái màn hình em nhé. Sau đó em nhấn biểu tượng phân số rồi em chèn phân số vào là được.
ĐKXĐ: x>0; x<>9
a:\(P=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{3}{x\sqrt{x}-9\sqrt{x}}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3\sqrt{x}-3}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{x-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\cdot\sqrt{x}}:\dfrac{x-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\cdot\sqrt{x}}\)
\(=\dfrac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-3\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-3}\)
b: P>1
=>P-1>0
=>\(\dfrac{1-\sqrt{x}+3}{\sqrt{x}-3}>0\)
=>\(\dfrac{4-\sqrt{x}}{\sqrt{x}-3}>0\)
=>\(\dfrac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)
=>\(3< \sqrt{x}< 4\)
=>9<x<16
Bước một: Nhập số tự nhiên
Bước hai: Nhấn =
Bước ba: Nhấn Shift
Bước bốn: Nhấn FACT
😵😵