Vẽ hình
khoảng cách từ điểm đến mỗi đầu đoạn thẳng bằng một nửa độ dài đoạn thẳng
Giúp với mình cần gấp, cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo BĐT: \(\left|a-b\right|\ge\left|a\right|-\left|b\right|\) ta có:
\(B=\left|2x-7\right|-\left|2x-11\right|\le\left|2x-7-2x+11\right|=\left|4\right|=4\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}2x-7\ge0\\2x-11\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge\dfrac{11}{2}\)
Vậy: \(B_{max}=4\Leftrightarrow x\ge\dfrac{11}{2}\)
a) \(3\cdot24^{10}=3\cdot6^{10}\cdot4^{10}=3\cdot3^{10}\cdot2^{10}\cdot2^{20}\)
\(=3^{11}\cdot2^{30}\)
\(4^{30}=2^{30}\cdot2^{30}=2^{30}\cdot4^{15}\)
Ta có \(4^{15}>3^{15}>3^{11}\) nên \(4^{15}>3^{11}\)
Khi đó \(4^{15}\cdot2^{30}>3^{11}\cdot2^{30}\) hay \(4^{30}>3\cdot24^{10}\)
b) \(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{19}{9^2\cdot10^2}\)
\(=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+...+\dfrac{19}{81\cdot100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)
Vậy dãy trên nhỏ hơn 1
a/
\(4^{30}=\left(2^2\right)^{30}=2^{60}=2^{30}.2^{30}=\left(2^2\right)^{15}.2^{30}=4^{15}.2^{30}\)
\(3.24^{10}=3.3^{10}.\left(2^3\right)^{10}=3^{11}.2^{30}< 3^{15}.2^{30}\)
\(\Rightarrow4^{30}=4^{15}.2^{30}>3^{15}.2^{30}>3^{11}.2^{30}=3.24^{10}\)
b/
\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}=\)
\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}=\)
\(=1-\dfrac{1}{10^2}< 1\)
a) (-5/9)^10 : x = (-5/9)^8
=> x = (-5/9)^10 : (-5/9)^8
=> x = (-5/9)^10-8 = (-5/9)^2
=> x = 25/81
b ) x : (-5/9)^8 = (-9/5)^8
=> x = (-9/5)^8 . (-5/9)^8
=> x = ( (-9)^8.(-5)^8 )/(5^8 . 9^8 )
=> x = 1
C) x^3 = -8 =(-2)^3
=> x = -2
a) (-5/9)¹⁰ : x = (-5/9)⁸
x = (-5/9)¹⁰ : (-5/9)⁸
x = (-5/9)²
x = 25/81
b) x : (-5/9)⁸ = (-9/5)⁸
x = (-9/5)⁸ . (-5/9)⁸
x = [-9/5 . (-5/9)]⁸
x = 1⁸
x = 1
c) x³ = -8
x³ = (-2)³
x = -2
a) \(\left[\left(-2,7\right)^4\right]^5-\left[\left(-2,7\right)^2\right]^{20}\)
\(=\left(-2,7\right)^{20}-\left(-2,7\right)^{20}\)
\(=0\)
b) \(\left(-0,5\right)^5:\left(-0,5\right)^3-\left(\dfrac{17}{2}\right)^7:\left(\dfrac{17}{2}\right)^6\)
\(=\left(-0,5\right)^2-\dfrac{17}{2}\)
\(=0,25-\dfrac{17}{2}\)
\(=-8,25\)
c) \(\left(8^{14}:4^{12}\right):\left(16^6:8^2\right)\)
\(=8^{14}:4^{12}:16^6\cdot8^2\)
\(=2^{48}:2^{24}:2^{24}\)
\(=0\)
`#3107.101107`
\(\dfrac{1}{4}+\dfrac{3}{4}\cdot19\dfrac{1}{3}-\dfrac{3}{4}\cdot39\dfrac{1}{3}\\ =\dfrac{1}{4}+\dfrac{3}{4}\cdot\left(19\dfrac{1}{3}-39\dfrac{1}{3}\right)\\ =\dfrac{1}{4}+\dfrac{3}{4}\cdot\left[\left(19-39\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)\right]\\ =\dfrac{1}{4}+\dfrac{3}{4}\cdot\left(-20\right)\\ =\dfrac{1}{4}+\left(-15\right)\\ =-\dfrac{59}{4}\)
A) 2|x-3| = x
TH1 : x ≥ 3
Pt => 2(x-3)=x
=> 2x - 6 = x
=> x = 6 (tm)
Th2 : x < 3
Pt => -2(x-3)=x
=> -2x + 6 = x
=> 3x = 6
=> x = 2( tm)
Vậy x thuộc { 6;2}
B) -3|2-2x| = x + 1
Th1 : x ≤ 1 hay 2 - 2x ≥0
Pt => -3(2-2x) = x + 1
=> -6 + 6x = x + 1
=> 5x = 7
=> x = 7/5 (ktm)
Th2 : x> 1
Pt => 3(2-2x) = x + 1
=> 6 - 6x = x +1
=> 7x = 5
=> x = 5/7 ( ktm)
Vậy kh có giá trị x thỏa mãn đề.