Tìm x
|3x+5|=x+1
|2x-3|=2x-3
Giúp với mình cần gấp cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(313^5.299-313^6.36\)
\(=313^5.299-313^636\)
\(=313^5\left(299-313.36\right)\)
Ta có:
Ta có: \(299\equiv5\left(mod7\right)\)
\(313\equiv5\left(mod7\right)\)
\(36\equiv1\left(mod7\right)\)
=> \(299-313.36\equiv5-5.1=0\left(mod7\right)\)
=> \(299-313.36⋮7\)
=> \(313^5.299-313^6.36⋮7\)
\(A=-\dfrac{1}{3}+\dfrac{1}{3^2}-...-\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\)
\(=\dfrac{1}{3}\left(-1+\dfrac{1}{3}\right)+\dfrac{1}{3^3}\left(-1+\dfrac{1}{3}\right)+...+\dfrac{1}{3^{99}}\left(-1+\dfrac{1}{3}\right)\)
\(=\dfrac{-2}{3}\left(\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
Ta có:
\(B=\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
\(9B=3+\dfrac{1}{3}+...+\dfrac{1}{3^{97}}\)
\(9B-B=3-\dfrac{1}{3^{99}}\)
\(B=\dfrac{3-\dfrac{1}{3^{99}}}{8}\)
\(A=-\dfrac{2}{3}B=\dfrac{-2}{3}.\dfrac{3-\dfrac{1}{99}}{8}=\dfrac{\dfrac{1}{3^{100}}-1}{4}\)
\(\left(-0,25\right)^4\cdot4^4\)
\(=\left(-\dfrac{1}{4}\right)^4\cdot4^4\)
\(=\left(-\dfrac{1}{4}\cdot4\right)^4\)
\(=\left(-\dfrac{4}{4}\right)^4\)
\(=\left(-1\right)^4\)
\(=1\)
\(\left|3x+5\right|=x+1\)
TH1: \(3x+5=x+1\left(x\ge-\dfrac{5}{3}\right)\)
\(\Rightarrow3x-x=1-5\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\left(ktm\right)\)
TH2: \(3x-5=-\left(x+1\right)\left(x< -\dfrac{5}{3}\right)\)
\(\Rightarrow3x-5=-x-1\)
\(\Rightarrow3x+x=-1+5\)
\(\Rightarrow4x=4\)
\(\Rightarrow x=1\)
Vậy không có x thõa mãn
_______
\(\left|2x-3\right|=2x-3\)
\(\Rightarrow2x-3=2x-3\left(x\ge\dfrac{3}{2}\right)\)
\(\Rightarrow0=0\) (luôn đúng)
Nên mọi x đề thỏa mãn khi \(x\ge\dfrac{3}{2}\)
Vậy: ...
|3x + 5| = x + 1
TH1: x ≥log ) -5/3
(1) ⇒ 3x + 5 = x + 1
3x - x = 1 - 5
2x = -4
x = -2 (loại)
*) TH2: x < -5/3
(1) ⇒ 3x + 5 = -x - 1
3x + x = -1 - 5
4x = -6
x = -3/2 (loại)
Vậy không tìm được x thỏa mãn yêu cầu
--------
|2x - 3| = 2x - 3 (2)
*) TH1: x 3/2
(2) ⇒ 2x - 3 = 2x - 3
0x = 0 (luôn đúng với mọi x ≥ 3/2)
*) TH2: x < 3/2
(2) ⇒ 2x - 3 = 3 - 2x
2x + 2x = 3 + 3
4x = 6
x = 3/2 (loại)
Vậy x ≥ 3/2