Tìm tất cả số nguyên để biểu thức:
a) A = 12n + 17 nhận giá trị nguyên b) A = 10n + 9 nhận giá trị nguyên
3n +1 5n - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Kéo dài OY cắt O'X' tại A ta có:
\(\widehat{XOY}\) = \(\widehat{XOA}\) = \(\widehat{OAO'}\) (so le trong) (1)
\(\widehat{Y'O'X'}\) = \(\widehat{Y'O'A}\) = \(\widehat{OAO'}\) (so le trong) (2)
Kết hợp (1) Và (2) ta có:
\(\widehat{XOY=}\) \(\widehat{X'O'Y'}\) (đpcm)
b, Kéo dài OY cắt O'Z' tại H
\(\widehat{ZOA}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\) (vì OZ là phân giác của góc XOY
\(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{X'O'Y'}\) (vì OY là phân giác của góc X'O'Y')
Mặt khác ta có \(\widehat{OAO'}\) = \(\widehat{HO'A}\) + \(\widehat{AHO'}\) (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)
\(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) ⇒ \(\widehat{AHO'}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\)
⇒ \(\widehat{ZOA}\) = \(\widehat{AHO'}\) (hai góc này ở vị trí so le trong)
⇒ OZ // O'Z' (đpcm)
a) Xét ∆ABD và ∆EBD có:
AB = BE (gt)
∠ABD = ∠EBD (BD là tia phân giác của ABC)
BD là cạnh chung
⇒ ∆ABD = ∆EBD (c-g-c)
b) Do ∆ABD = ∆EBD (cmt)
⇒ AD = ED (hai cạnh tương ứng)
Lại do ∆ABD = ∆EBD (cmt)
⇒ ∠BAD = ∠BED = 90⁰ (hai góc tương ứng)
⇒ ∠DAF = ∠DEC = 90⁰
Xét hai tam giác vuông: ∆DAF và ∆DEC có:
AD = ED (cmt)
∠ADF = ∠EDC (đối đỉnh)
⇒ ∆DAF = ∆DEC (cạnh góc vuông - góc nhọn kề)
⇒ AF = EC (hai cạnh tương ứng)
c) ∆BAE có:
AB = BE (gt)
⇒ ∆BAE cân tại B
⇒ ∠BEA = ∠BAE = (180⁰ - ∠ABC) : 2 (1)
Do AF = EC (cmt)
AB = BE (gt)
⇒ AF + AB = EC + BE
⇒ BF = BC
⇒ ∆BFC cân tại B
⇒ ∠BCF = ∠BFC = (180⁰ - ∠ABC) : 2 (2)
Từ (1) và (2) suy ra:
∠BEA = ∠BCF
Mà ∠BEA và ∠BCF là hai góc đồng vị
⇒ AE // CF
A = 1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹
⇒ 4A = 1 + 1/4 + 1/4² + ... + 1/4⁹⁸
⇒ 3A = 4A - A
= (1 + 1/4 + 1/4² + ... + 1/4⁹⁸) - (1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹)
= 1 - 1/4⁹⁹
⇒ A = (1 - 1/4⁹⁹)/3
Do 1 - 1/4⁹⁹ < 1
⇒ (1 - 1/4⁹⁹)/3 < 1/3
Vậy A < 1/3
Lời giải:
Do $(2023-x)^2\geq 0$ với mọi $x$ nên:
$3(y-3)^2=16-(2023-x)^2\leq 16<18$
$\Rightarrow (y-3)^2< 6$
Mà $(y-3)^2\geq 0$ và $(y-3)^2$ là số chính phương với mọi $y$ nguyên.
$\Rightarrow (y-3)^2=0$ hoặc $(y-3)^2=4$
Nếu $(y-3)^2=0$ thì $y=3$.
Khi đó: $(2023-x)^2=16-3.0^2=16$
$\Rightarrow 2023-x=4$ hoặc $2023-x=-4$
$\Rightarrow x=2019$ hoặc $x=2027$
Nếu $(y-3)^2=4\Rightarrow y-3=2$ hoặc $y-3=-2$
$\Rightarrow y=5$ hoặc $y=1$
Khi đó:
$(2023-x)^2=16-3.4=4=2^2=(-2)^2$
$\Rightarrow 2023-x=2$ hoặc $2023-x=-2$
$\Rightarrow x=2021$ hoặc $x=2025$
5\(x\) - 9 = 5 + 3\(x\)
5\(x\) - 3\(x\) = 5 + 9
2\(x\) = 14
\(x\) = 14 : 2
\(x\) = 7
Gọi biểu thức trên là A
Ta có:
2A = (\(\dfrac{1}{2.4}\)+\(\dfrac{1}{4.6}\)+...+\(\dfrac{1}{x.\left(x+2\right)}\)).2
2A = \(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+...+\(\dfrac{2}{x\left(x+2\right)}\)
2A = \(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+2}\)
2A = \(\dfrac{1}{2}\)-\(\dfrac{1}{x+2}\)
mà A = \(\dfrac{1}{10}\)(đề bài)
nên 2A = \(\dfrac{2}{10}\) hay \(\dfrac{1}{2}\) - \(\dfrac{1}{x+2}\) = \(\dfrac{2}{10}\)
suy ra \(\dfrac{1}{x+2}\) = \(\dfrac{1}{2}\)-\(\dfrac{2}{10}\)=\(\dfrac{3}{10}\)
\(\left(-5\right)^{18}:5^{x-3}=25^6\)
\(=>5^{x-3}=\left(-5\right)^{18}:25^6\)
\(=>5^{x-3}=5^{18}:5^{12}\)
\(=>5^{x-3}=5^6\)
\(=>x-3=6\)
\(=>x=6+3\)
\(=>x=9\)
a) A nguyên khi (12n + 17) ⋮ (3n + 1)
Ta có:
12n + 17 = 12n + 4 + 13
= 4(3n + 1) + 13
Để (12n + 17) ⋮ (3n + 1) thì 13 ⋮ (3n + 1)
⇒ 3n + 1 ∈ Ư(13) = {-13; -1; 1; 13}
⇒ 3n ∈ {-14; -2, 0; 12}
⇒ n ∈ {-14/3; -2/3; 0; 4}
Mà n là số nguyên
⇒ n ∈ {0; 4}
b) Để A là số nguyên thì ⋮ (10n + 9) (5n - 1)
Ta có:
10n + 9 = 10n - 2 + 11
= 2(5n - 1) + 11
Để (10n + 9) ⋮ (5n - 1) thì 11 ⋮ (5n - 1)
⇒ 5n - 1 ∈ Ư(11) = {-11; -1; 1; 11}
⇒ 5n ∈ {-10; 0; 2; 12}
⇒ n ∈ {-2; 0; 2/5; 12/5}
Mà n là số nguyên
⇒ n ∈ {-2; 0}