10d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{2021.2022}\)
\(=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2021.2022}\right)\)
\(=3.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\right)\)
\(=3.\left(1-\dfrac{1}{2022}\right)\)
\(=\dfrac{2021}{674}\)
\(\left(x-2\right).\left(x-2\right)+2024=\left(x-2\right)^2+2024\ge2024\forall x\in R\\ Vậy:min_{BT}=2024\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Lời giải:
$\frac{3}{1\times 3}+\frac{3}{3\times 5}+\frac{3}{5\times 7}+....+\frac{3}{57\times 59}$
$=\frac{3}{2}(\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+....+\frac{59-57}{57\times 59})$
$=\frac{3}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{57}-\frac{1}{59})$
$=\frac{3}{2}(1-\frac{1}{59})=\frac{87}{59}$
Sửa đề: \(\dfrac{3}{1.3}+\dfrac{3}{3.5}+...+\dfrac{3}{57.59}\)
\(=\dfrac{3}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{57.59}\right)\)
\(=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{57}-\dfrac{1}{59}\right)\)
\(=\dfrac{3}{2}.\left(1-\dfrac{1}{59}\right)\)
\(=\dfrac{3}{2}.\dfrac{58}{59}=\dfrac{87}{59}\)
Lời giải:
Đặt $A=\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}$
$3A=\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}$
$=\frac{23-20}{20.23}+\frac{26-23}{23.26}+\frac{29-26}{26.29}+...+\frac{80-77}{77.80}$
$=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}$
$=\frac{1}{20}-\frac{1}{80}$
$A=\frac{1}{3}(\frac{1}{20}-\frac{1}{80})=\frac{1}{60}-\frac{1}{240}< \frac{1}{60}< \frac{1}{9}$
Ta có:
\(\dfrac{1}{20.23}+\dfrac{1}{23.26}+...+\dfrac{1}{77.80}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{20.23}+\dfrac{3}{23.26}+...+\dfrac{3}{77.80}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{20}-\dfrac{1}{80}\right)\)
\(=\dfrac{1}{3}.\dfrac{3}{80}=\dfrac{1}{80}< \dfrac{1}{9}\) (đpcm)
A = 5 + 52 + 53 + ... + 5100
5A = 52 + 53 + 54 + ... + 5101
5A - A = (52 + 53 + 54 + ... + 5101) - (52 + 53 + 54 + ... + 5100)
4A = 52 + 53 + 54 + ... + 5101 - 52 - 53 - 54 - ... - 5100
4A = (52 - 52) + (53 - 53) + (54 - 54) + ... + (5100 - 5100) + (5101 - 5)
4A = 0 + 0 + ... 0 + 5101 - 5
A = \(\dfrac{5^{101}-5}{4}\)
b; 4.A + 5 = 5n
5101 - 5 + 5 = 5n
5101 = 5n
n = 101
Vậy n = 101
Lời giải:
a. Sau 1 năm Trúc nhận được số tiền cả vốn lẫn lãi là:
$10000000+10000000\times 6:100=10600000$ (đồng)
b. Nếu bạn chỉ gửi tiền với lãi suất không kỳ hạn thì sau 40 ngày bạn nhận tổng cộng:
$10000000+10000000\times \frac{0,3}{100}\times \frac{40}{365}=10003287$ (đồng)
Lời giải:
Cần thêm số nước để đầy bể là:
$1-\frac{3}{4}=\frac{1}{4}$ (dung tích bể)
Vòi chảy đầy bể sau: $\frac{1}{4}: \frac{1}{8}=2$ (giờ)
Thời gian vòi chảy đầy bể là:
\(\dfrac{3}{4}:\dfrac{1}{8}=6\) (giờ)