bài 2 . cho góc nhọn xOy.trên tia ox lấy 2 điểm A,B sao cho OA<OB.trên tia oy lấy 2 điểm C,D sao cho OC=OA,OD=OB.gọi M là giao điểm của AD và BC.chứng minh rằng :
a,tam giác OAD= tam giác OCB
b,AD=BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ABM và ∆CDM có:
AM = CM (gt)
AMB = CMD (đối đỉnh)
BM = DM (gt)
⇒ ∆ABM = ∆CDM (c-g-c)
b) Do ∆ABM = ∆CDM (cmt)
⇒ MAB = MCD (hai góc tương ứng)
⇒ MCD = 90⁰
⇒ MC ⊥ CD
⇒ AC ⊥ CD
Lời giải:
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$
$\widehat{BAM}=\widehat{CAM}$ (do $AM$ là tia phân giác $\widehat{A}$)
$AM$ chung
$\Rightarrow \triangle ABM=\triangle ACM$ (c.g.c)
$\Rightarrow BM=CM$
|3\(x\) - 1| +|1 - 3\(x\)| = 9
vì |3\(x\) - 1| = |1 - 3\(x\)| nên:
|3\(x\) - 1| + |1 - 3\(x\)| = |3\(x\) - 1| + |3\(x\) - 1| = 2|3\(\)\(x\) - 1|
⇒2.|3\(x\) - 1| = 9
|3\(x\) - 1| = \(\dfrac{9}{2}\)
\(\left[{}\begin{matrix}3x-1=\dfrac{-9}{2}\\3x-1=\dfrac{9}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=-\dfrac{9}{2}+1\\3x=\dfrac{9}{2}+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=-\dfrac{7}{2}\\3x=\dfrac{11}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{7}{6}\\x=\dfrac{11}{6}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {- \(\dfrac{7}{6}\); \(\dfrac{11}{6}\)}