Những cánh diều giấy bay cao vút gắn liền với tuổi thơ của nhiều bạn nhỏ ở nông thôn Việt Nam. Muốn diều bay được, ngoài phần đuôi thì phần thân diều cũng phải được thiết kết một cách cân đối. Để làm phần thân diều, người ta dùng hai que tre (gọi là “xương” diều). Hai que tre được đặt vuông góc với nhau tại trung điểm của một que. Khi đó 4 đỉnh của thân diều trùng với 4 đầu của hai que tre và phần thân diều bằng giấy là một tứ giác có hai cặp cạnh bằng nhau để đảm bảo tính cân xứng. Em hãy vẽ bản thiết kế phần thân diều vào vở, chỉ ra và chứng minh hai cặp cạnh bằng nhau của phần thân diều ( bằng giấy và tre) trên hình vẽ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để A có giá trị là một số nguyên thì:
\(\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)+4⋮\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow4⋮\left(\sqrt{x}-3\right)\)
Vì \(x\in Z\) nên \(\left(\sqrt{x}-3\right)\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 16 | 4 | 25 | 1 | 49 | (loại) |
Vậy ....
Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}=\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Để A có giá trị là một số nguyên khi:
\(4⋮\sqrt{x}-3\) hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Do đó:
\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=-1+3=2\Rightarrow x=4\)
\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=1+3=4\Rightarrow x=16\)
\(\sqrt{x}-3=-2\Rightarrow\sqrt{x}=-2+3=1\Rightarrow x=1\)
\(\sqrt{x}-3=2\Rightarrow\sqrt{x}=2+3=5\Rightarrow x=25\)
\(\sqrt{x}-3=-4\Rightarrow\sqrt{x}=-4+3=-1\) ( loại )
\(\sqrt{x}-3=4\Rightarrow\sqrt{x}=4+3=7\Rightarrow x=49\)
Vậy để A là một số nguyên khi \(x\in\left\{4;16;1;25;49\right\}\)

Lời giải:
$\frac{55-x}{1963}+\frac{50-x}{1968}+\frac{45-x}{1973}+\frac{40-x}{1978}+4=0$
$\frac{55-x}{1963}+1+\frac{50-x}{1968}+1+\frac{45-x}{1973}+1+\frac{40-x}{1978}+1=0$
$\frac{2018-x}{1963}+\frac{2018-x}{1968}+\frac{2018-x}{1973}+\frac{2018-x}{1978}=0$
$(2018-x)(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978})=0$
$\Rightarrow 2018-x=0$
$\Rightarrow x=2018$.

\(\dfrac{1}{3}.\sqrt{\dfrac{9}{25}}\) - (\(\dfrac{1}{3}\) + \(\dfrac{1}{2}\))2
= \(\dfrac{1}{3}\).\(\dfrac{3}{5}\) - (\(\dfrac{5}{6}\))2
= \(\dfrac{1}{5}\) - \(\dfrac{25}{36}\)
= - \(\dfrac{89}{180}\)

