Tìm tất cả các số nguyên dương P > 1
sao cho phương trình sao có một nghiệm.
\(^{x^3+px^2+\left(p-1+\frac{1}{P-1}\right)x+1=0}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+px^2+\left(p-1+\frac{1}{p-1}\right)x+1=0\)
\(\Leftrightarrow\left(p-1\right)x^3+p\left(p-1\right)x^2+\left(p^2-2p+2\right)x+p-1=0\)
\(\Leftrightarrow\left(x+p-1\right)\left[x^2\left(p-1\right)+x\left(p-1\right)+1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1-p\\x^2\left(p-1\right)+x\left(p-1\right)+1=0\left(1\right)\end{cases}}\)
Phương trình có nghiệm duy nhất khi phương trình \(\left(1\right)\)vô nghiệm hoặc có nghiệm kép bằng \(1-p\).
- \(\left(1\right)\)vô nghiệm:
\(\Delta< 0\Leftrightarrow\left(p-1\right)^2-4\left(p-1\right)< 0\Leftrightarrow1< p< 5\).
- \(\left(1\right)\)có nghiệm kép bằng \(1-p\).
\(\left(1\right)\)có nghiệm bằng \(1-p\)suy ra \(\left(1-p\right)^2\left(p-1\right)+\left(1-p\right)\left(p-1\right)+1=0\)
mà \(p>1\)nên phương trình này vô nghiệm.
Vậy \(1< p< 5\)mà \(p\)nguyên nên \(p\in\left\{2;3;4\right\}\).
Rules of Subject-Verb Agreement:
Rule 1:
Singular subjects need singular verbs, while plural subjects require plural verbs. ‘Be’ verbs change the most according to the number and person of the subject. Other verbs do not change much on the basis of the subjects except the verbs of the simple present tense. If the subjects are a third person singular number, the verbs are used with s/es when they are in simple present tense. The verbs with s/es in the sentence are called singular verbs.
‘Be’ verbs according to number and person of the subject.
Person/Number | Singular | Plural |
First | am | are |
Second | are | are |
Third | is | are |
Example:
Person/Nmber | Singular | Plural |
First | I am an excellent tennis player. | We are excellent tennis players. |
Second | You are a nice person. | You all are nice people. |
Third | Alex plays well under pressure. He is a good player. | They are good at chasing. They play well under pressure. |
Rule 2:
When the prepositional phrases separate the subjects from the verbs, they have no effect on the verbs.
Example:
A study (singular subject) on African countries shows (singular verb) that 80% of the people (plural subject) of this continent live (plural verb) below the poverty line.
The perspective of different people varies from time to time.
The fear of terrorists and militants has made them flee the city.
Rule 3:
Nouns connected by the conjunction and in the subject work as the plural subject and take a plural verb.
Example:
Rule 4:
If the conjunction ‘and’ is replaced by together with/ along with/ accompanied by/ as well as, the verb will have no effect for the later part of these expressions. The words prior to these expressions are the subjects.
Example:
Note: If these expressions are replaced by ‘and’, the subjects will be regarded as plurals, and so the verbs have to be plural.
Example: Tom and his brothers are going to the city.
Rule 5:
Some nouns are always singular and indefinite. When these nouns become the subjects, they always take singular verbs.
Any + singular noun | No + singular noun | Some + sin. noun | Every + sin. noun | Each + sin. noun |
Anybody Anyone Anything | Nobody No one Nothing | Somebody Someone Something | Everybody Everyone Everything | Each student |
Either* Neither* |
*Note: Either and neither are singular if they are not used with or and nor.
Example:
Rule 6:
Some nouns are always plural. These nouns have two parts.
Scissors, shorts, eyeglasses, pants, thongs, jeans, trousers, etc. |
Example:
Note: If these words are preceded by the phrase a pair of, they will be regarded as singular subjects.
Example:
Rule 7:
None is a singular subject when it is used alone. When it is used with a prepositional phrase starting with of, the subject can be both plural and singular.
None + of the + singular noun + singular verb |
None + of the + plural noun + plural verb |
Example:
Note: No + plural noun takes plural verbs.
Example: no men are hungry now.
Rule 8:
Either . . . or, neither . . . nor, or, and nor take two nouns before and after them. The nouns placed after these conjunctions are regarded as the subjects of the sentence. The nouns placed prior to the words or and nor have no effect on the verbs.
Example:
Rule 9:
The sentences beginning with here/there are different in structure. In this case, the subject comes after the verb.
Here/There + verb + subject . . . . . . |
Example:
Rule 10:
Collective nouns are usually regarded as singular subjects.
Examples:
Twenty dollars is not a lot of money. (Here, the noun is plural, but the subject is regarded as a collective noun.)
Note: The following phrases are also regarded as collective nouns and thus singular subjects.
Flock of birds/sheep, herd of cattle, pack of dogs/wolves, school of fish, pride of lions |
Example:
A flock of sheep always moves together.
Rule 11:
A number of + noun is a plural subject, and it takes a plural verb. The number of + noun is a singular subject, and it takes a singular verb.
Example:
A number of dancers are coming to the party. (Indefinite number of dancers – plural)
Rule 12:
If a gerund or an infinitive comes as a subject, the verb will always be singular.
Example:
Swimming is a good exercise.
Rule 13:
If the + an adjective appears as the subject of a sentence, it will be plural.
Example:
The pious are loved by God.
* tham khảo mạng *
Bước 1: Các bạn mở trang web muốn lưu lại sau đó nhấn Ctrl + A để bôi đen toàn bộ trang web hoặc dùng chuột bôi đen phần nội dung mà bạn muốn lưu lại.
Bước 2: Sau khi bôi đen xong các bạn nhấn Ctrl + C để copy phần đã bôi đen.Tiếp theo đó bạn mở Word và nhấn Ctrl + V để dán nội dung của trang web vào Word, nếu có thông báo hiện lên các bạn nhấn Yes.
\(A=\frac{1+sin4x-cos4x}{1+sin4x+cos4x}=\frac{sin4x+\left(1-cos4x\right)}{sin4x+\left(1+cos4x\right)}=\frac{sin4x+2sin^22x}{sin4x+2cos^22x}=\frac{2sin2x\left(cos2x+sin2x\right)}{2cos2x\left(sin2x+cos2x\right)}\)
\(=\frac{2sin2x}{2cos2x}=tan2x\)
\(\frac{tan2x-tanx}{tan2xtanx}=\frac{1}{tanx}-\frac{1}{tan2x}=\frac{1}{tanx}-\frac{1-tan^2x}{2tanx}=\frac{1+tan^2x}{2tanx}=\frac{1+\frac{sin^2x}{cos^2x}}{\frac{2sinx}{cosx}}\)
\(=\frac{1}{2cosxsinx}=\frac{1}{sin2x}\)
suy ra \(\frac{tan2xtanx}{tan2x-tanx}=sin2x\).
a) Chú ý rằng với hai người \(A\)và \(B\)thi đấu với nhau thì \(A\)thi đấu với \(B\)và \(B\)thi đấu với \(A\).
Mỗi người sẽ đấu với \(n-1\)người, nên tổng số ván đấu của giải là:
\(\frac{n\left(n-1\right)}{2}\).
b) Giả sử \(n=12\).
Tổng số ván đấu của giải là: \(\frac{12.11}{2}=66\).
Tổng số điểm của tất cả các kì thủ là: \(2\times66=132\).
Kì thủ cuối thắng ba kì thủ đứng đầu, do đó số điểm kì thủ cuối ít nhất là \(2.3=6\).
Do số điểm các kì thủ đôi một khác nhau nên tổng số điểm tối thiểu của tất cả các kì thủ là:
\(6+7+8+9+10+11+12+13+14+15+16+17=138>132\).
Do đó không thể xảy ra điều này.
Ta có đpcm.
\(x^3+px^2+\left(p-1+\frac{1}{p-1}\right)x+1=0\)
\(\Leftrightarrow\left[x-\left(1-p\right)\right]\left[\left(p-1\right)x^2+\left(p-1\right)x+1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1-p\\\left(p-1\right)x^2+\left(p-1\right)x+1=0\end{cases}}\left(1\right)\)
Để pt có no duy nhất <=> hệ pt (1) có no duy nhất
<=> pt(1) vô no hoặc pt(1) có nghiệm kép x1=x2=1-p
Kết hợp điều kiện \(p>1,p\inℕ\)ta tìm được các giá trị của p thỏa mãn là
p=2,3,4